Showing posts with label ip. Show all posts
Showing posts with label ip. Show all posts

Saturday, 25 April 2020

Cisco Helps Competitive Carriers Deliver 5G Service Agility

Cisco Prep, Cisco Tutorial and Material, Cisco Certifications, Cisco 5G

5G promises revolutionary new consumer experiences and lucrative new business-to-business (B2B) services that were never possible before: wireless SD-WANs, private 5G networks, new edge computing cases, and many others. Actually delivering these groundbreaking services, however, will require much more than just new 5G radio technology at cell sites. It will take very different capabilities, and a different kind of network, then most service providers have in place today.

Ultimately, you need a “service-centric” network—one that provides the flexibility and control to build differentiated services, rapidly deliver them to customers, and manage them end-to-end—across both wireless and wireline domains. What does a service-centric network look like? And what’s the best way to get there from where you are today? Let’s take a closer look.

Building a Service-Centric Network


Viewing the media coverage around 5G, you might think the revolution begins and ends with updating the radio access network (RAN). But that’s just one piece of the puzzle. Next-generation services will take advantage of the improved bandwidth and density of 5G technology, but it’s not new radios, or even 5G packet cores, that make them possible. Rather, they’re enabled by the ability to create custom virtual networks tuned to the needs of the services running across them. That’s what a service-centric network is all about.

When you can tailor traffic handling end-to-end on a per-flow basis, you can deliver all manner of differentiated services over the same infrastructure. And, when you have the end-to-end automation that service-centric networks imply, you can do it much more efficiently. Those capabilities go much deeper than the radios at your cell sites. Sure, adding 5G radios will improve last-mile speeds for your customers. But if you’re not evolving your end-to-end infrastructure towards service-centric principles, you won’t be able to deliver net-new services—or tap new B2B revenue streams.

Today, Cisco is helping operators of all sizes navigate this journey. We’re providing essential 5G technologies to help service providers like T-Mobile transform their networks and services. (In fact, Cisco is providing the foundational technology for T-Mobile’s non-standalone and standalone 5G architecture strategy.) At the same time, we’re building on our legacy as the leader in IP networking to unlock new transport, traffic handling, and automation capabilities. At the highest level, this evolution entails:

1. Implementing next-generation IP-based traffic handling

2. Extending IP all the way to endpoints

3. Laying the foundation for end-to-end automation

Optimizing Traffic Management


As the first step in building a service-centric network, you should be looking to further the migration of all network connections to IP and, eventually, IPv6. This is critical because IP networks, combined with technologies such as MPLS, enable multi-service networks with differentiated traffic policies. Without advanced traffic management, you can’t provision, monitor, and assure next-generation services under service-level agreements (SLAs), which means you can’t tap into lucrative consumer and business service revenue opportunities.

Today, most operators manage traffic via MPLS. Although MPLS has been highly effective at enabling traffic differentiation, it has complexity issues that can impede the scale and automation of tomorrow’s networks. Fortunately, there’s another option: segment routing. Segment routing offers a much simpler way to control traffic handling and policy on IP networks. And, by allowing you to programmatically define the paths individual services take through the network, it enables much more efficient transport.

Many operators have deployed segment routing and are evolving their networks today. You can start now even in “brownfield” environments. Cisco is helping operators implement SR-MPLS in a way that coexists with current architectures, and even interoperates with standards-based legacy solutions from other vendors. Once that foundation is in place, it becomes much easier to migrate to full IPv6-based segment routing (SRv6) in the future.

Extending IP


As you are implementing segment routing, you should go one step further and extend these new service differentiation capabilities as close to the customer as possible. This is a natural progression of what operators have been doing for years: shifting almost all traffic to IP to deliver it more effectively.

Using segment routing in your backhaul rather than Layer-2 forwarding allows you to use uniform traffic management everywhere. Otherwise, you would have to do a policy translation every time a service touches the network. Now, everything uses segment routing end to end, instead of requiring different management approaches for different domains. You can uniformly differentiate traffic based on needs, applications, even security, and directly implement customer SLAs into network policy. All of a sudden, the effort required to manage services and integrate the RAN with the MPLS core is much simpler.

The other big benefit of moving away from Layer-2 forwarding: a huge RAN capacity boost. Layer-2 architectures must be loop-free, which means half the paths coming off a radio node—half your potential capacity—are always blocked. With segment routing, you can use all paths and immediately double your RAN bandwidth.

Building Automation


As you progress in building out your service-centric network, you’re going to be delivering many more services. And you’ll need to manage more diverse traffic flows with improved scale, speed, and efficiency. You can’t do that if you’re still relying on slow, error-prone manual processes to manage and assure services. You’ll need to automate.

Cisco is helping service providers of all sizes lay the foundation for end-to-end automation in existing multivendor networks. That doesn’t have to mean a massive technology overhaul either, with a massive price tag to go with it. You can take pragmatic steps towards automation that deliver immediate benefits while laying the groundwork for much simpler, faster, more cost-effective models in the future.

Get the Value You Expect from 5G Investments


The story around 5G isn’t fiction. This really is a profound industry change. It really will transform the services and revenue models you can bring to the market. But some things are just as true as they always were: You don’t generate revenues from new radio capabilities, you generate them from the services you can deliver across IP transport.

What’s new is your ability to use next-generation traffic handling to create services that are truly differentiated. That’s what the world’s largest service providers are building right now, and it’s where the rest of the industry needs to go if they want to compete and thrive.

Let Cisco help you build a service-centric network to capitalize on the 5G revolution and radically improve the efficiency, scalability, and total cost of ownership of your network.

Wednesday, 17 October 2018

Miercom Tests Endorse Cisco 1000 Series ISRs’ IPsec Encryption Performance

In both traditional and future SD-WAN network architectures, IPsec encryption performance is one of the most important technologies for secure delivery of customer traffic in branch routers. Higher IPsec throughput performance can also translate into improved customer experience and even revenue.

Miercom recently validated a few models of Cisco and Huawei fixed branch routers, measuring RFC 2544 IPsec encryption throughput performance. The testing shows that the Cisco 1111 Integrated Services Router (ISR) demonstrated the highest average IPsec throughput performance of 365 Mbps, compared to Huawei and HPE fixed branch routers. The Huawei AR1220E shows only 245 Mbps. The result is the average of 20 test results, so it is very reliable.

Table 1 shows the overall throughput performance comparison chart from the Miercom report.

Cisco Tutorial and Material, Cisco Learning, Cisco Study Material, Cisco Guides

Table 1. Competitive WAN performance

Let’s look at the result variation among the 20 test runs. See Table 2.

Cisco Tutorial and Material, Cisco Learning, Cisco Study Material, Cisco Guides

Table 2. WAN performance variation

The Huawei AR1220E fixed router shows the largest throughput variations. In other words, Huawei fixed router throughput performance is not the same when measured at different times under the same setup conditions and environments. To customers, this could mean very inconsistent throughput due to complex processing of I/O, buffering, table lookup, queuing, and forwarding sessions. For a service provider, this could result in poor customer satisfaction.

If we look at the overall test result variations reported by Miercom, the two Cisco fixed ISRs, the 1117 and 1111, have the lowest variations in IPsec throughput results, while the three Huawei fixed routers, the AR1220E, AR169FGW-L, and AR201, show the highest variations. See Table 3. To customers, this means that if you pick Cisco fixed routers as your branch router for WAN services, you will get better and more consistent IPsec throughput performance, while if you pick Huawei fixed routers, the service may be very inconsistent.

Cisco Tutorial and Material, Cisco Learning, Cisco Study Material, Cisco Guides

Table 3. Competitive WAN performance variability

For the full details, download the comprehensive Miercom report and accompanying test results.

Thursday, 6 April 2017

Protecting Innovation: Update on ITC Enforcement Action

Opening statements for the ITC ‘944 investigation enforcement hearing began this afternoon, and the full evidentiary hearing should be complete tomorrow. In the ITC’s final decision last summer, Arista was found to infringe three Cisco patents, including our SysDB patent. While Arista claims to have redesigned its products to avoid Cisco’s SysDB patent, they declined to present the redesign to the Commission for review. The ITC now will determine in the enforcement proceeding whether Arista’s redesign continues to infringe Cisco’s SysDB patent and, if so, what the penalty should be for the ongoing infringement.