Out-of-the-box automation with Cisco DNA Center
Granular Automation Control
Focusing on automation outcomes and benefits
Tangible Metrics | Intangibles |
Faster moves adds and changes |
Team Agility |
Tangible Metrics | Intangibles |
Faster moves adds and changes |
Team Agility |
When something in your house breaks, it’s your problem. When something in your network breaks, it’s everyone’s problem. At least, that’s how it can feel when the sudden influx of support tickets, angry phone calls, and so on start rolling in. They quickly remind you that those numbers behind the traffic visualizations are more than numbers alone. They represent individuals. That includes individuals who don’t notice how the infrastructure supports them until suddenly… it’s not.
The adage that “time is money” applies here, and maybe better than anywhere else. Because when users on the network cannot do what they came to do, the value of their halted actions can add up quickly. That means reaction can’t be the first strategy for preserving a network. Instead, proactive measures that prevent problems (ha, alliteration) become first-order priorities.
That’s where Cisco DNA Center and Assurance comes in, and along with it, Leveraging Cisco Intent-Based Networking DNA Assurance (DNAAS) v2.0, the DNAAS course.
This will come as no surprise to anyone, but networks are built for a purpose. From a top-down perspective, the network provides the infrastructure necessary to support business intent. Cisco DNA Center allows network admins and operators to make sure that the business intent is translated into network design and functionality. This ensures that the network is actually accomplishing what is needed. Cisco DNA Center has a load of tools, configs, and templates to make the network functional.
Cisco DNA Assurance is the tool that keeps the network live. With it, we can use analytics, machine learning, and AI to understand the health of the intent-based network. DNA Assurance can identify problems before they manifest into critical issues. DNA Assurance allows us to gauge the overall health of the network across clients, devices, and applications and establish an idea of overall health. From there, we can troubleshoot and identify consistent issues compared to the baseline health of the network — before those issues have a significant impact. We don’t have to wait for an outage to act. (Or react.)
We’re no longer stuck in this red-light or green-light situation, where the network is either working or it’s not. When the light goes from green to yellow, we can start saying, “Hey, why is that happening? Let’s get to the root cause and fix it.”
Obviously, this was all-important before the big shift to hybrid work environments, but it’s even more critical now. When you have a problem, you can’t just walk down the hall to the IT guy, you’re sort of stranded on an island, hoping someone else can figure out what’s wrong. And on the other hand, when you’re the person tasked with fixing those problems, you want to know what’s going on as quickly as possible.
One customer I worked with installed Cisco DNA Assurance to ‘prove the innocence of the network.’ He felt that being able to quickly identify the network problem, especially if it was not necessarily a network issue, helped to get fixes done more quickly and efficiently. DNA Assurance helped to rule out the network or ‘prove it was innocent’ and allow him to narrow his troubleshooting focus.
Another benefit of DNA Assurance is that it’s built on Cisco’s expertise. 30+ years of experience with troubleshooting networks and devices have gone into developing Assurance. Its technology doesn’t just give you an overview of the network, it lets you know where things are going wrong and helps you discover solutions.
Leveraging Cisco Intent-Based Networking DNA Assurance (DNAAS) v2.0 is the technology training course we developed to teach users about Cisco DNA Assurance. The course is designed to give a clear understanding of what DNA Assurance can do and to build a deep knowledge of the capabilities of the technology. It’s meant to give new users a firm handle on the technology while increasing the expertise of existing users and empowering them to further optimize their implementation of DNA Assurance.
One of the things we wanted to do was highlight some of the areas that users may not have touched on before. We give them a chance to experience those things and potentially roll them into tangible solutions on their own network. It’s all meant to be immediately actionable. Users can take this course and instantly turn back around and do something with the knowledge.
Labs are one of the ways that we’ve focused on bringing more of the experience to users who are taking the course. New users are going to interact with a real DNA Center instance, and experienced users are going to have the chance to see new configurations. We build out the fundamental skills necessary to use DNA Assurance, rather than focusing on strict use cases.
We treated it like learning to drive a car. We could teach you all the specifics about one highly specialized vehicle, or we could give you the foundational skills necessary to drive anything and allow you to work towards your specific needs.
Overall, students are going to expand their practical knowledge of DNA Assurance and gain actionable skills they can immediately use. DNAAS is an excellent entry into the technology for new users and an equally excellent learning opportunity for experienced users. It helps build important skills that help users to get the most out of the technology and keep their networks running smoothly.
Source: cisco.com
It seems like a simple idea. All you want is to get the network to do what you intend it to. Nothing more, nothing less. But in today’s world, there are so many factors when it comes to networking: more users, more devices, security concerns, various domains, distributed applications, cloud, artificial intelligence (AI), 5G, IoT — the list goes on and on.
Cisco’s SD-WAN can help you. It transforms a legacy manual network into a software-defined overlay that helps both automate deployment and management and provides more intelligence with policies for path selection to improve user experience. Those policies are then applied consistently across the network, a network that now uses insights and automation to continuously monitor and adjust network performance to meet your business intent. Think of it as a continual feedback loop of incremental improvement.
Building upon the connectivity of SD-WAN, secure access service edge (SASE) is an architecture that combines connectivity and security. Coined by Gartner in 2019, SASE unifies SD-WAN networking and security services into a cloud-delivered architecture to provide access and security from edge to edge — including the data center, remote offices, roaming users, and beyond.
Is your wide area network underpinned by a 1000 Series ISR? Are you running 4000 Series ISRs? Do you have a few ASR 1000 Series units? Did you have a Cisco ONE license? Did you recently renew your Software Support Service (SWSS) on those devices? Consider this: the Cisco routing devices you currently have in your wide area network may already hold your ticket to entry into the world of SD-WAN and SASE.
“How can that be?” you may be wondering. The answer lies in the magic of software.
Think of it this way. In the past, if you wanted to upgrade the performance of a car, you had to swap out hard parts. Camshafts. Differentials. Transmissions. Engines.
Today, many cars just need a software update to the engine control module (ECM). Dinan for BMW. Cobb Tuning for Mitsubishi. And of course, Tesla and its downloadable software updates to unlock the high-performance “Ludicrous Mode.”
Cisco has continued to deliver on its promise of innovation in our Cisco DNA software for Wireless subscription. Networking demands are increasing and trends in technology are changing, like the need for a safe and productive hybrid work environment. By deploying the latest innovations in Cisco DNA Advantage software for Wireless along with Cisco DNA Center, you can provide your workforce with improved wireless stability, performance, and security. This leads to increased worker productivity, no matter where they are working from.
Wireless 3D Analyzer: Gain a completely new perspective of the typically invisible Wi-Fi radio frequency (RF). 2D maps that show AP placement on the floor and how RF is propagated from a top-down view no longer cut it because we live in a 3D world. As a network provider, in order to ensure that there is proper wireless coverage in every floor and building, you would need the ability to view wireless RF at different angles in order to discover and resolve RF coverage holes. The wireless 3D map solves these issues by creating an immersive experience that accurately replicates your floor map and all obstacles. This is an incredible addition to our monitoring and network deployment feature set.
In the not-too-distant past, everything in the application and networking stack was under IT’s control. Workloads lived securely in the on-premises data center—people sat in their campus offices connected to the secure wireless network, and an MPLS service with an SLA connected branch offices to the data center and each other.
Today, workforce productivity depends on cloud and SaaS applications that often rely on the public cloud infrastructure, which in turn depends on the internet as part or all the WAN connectivity. The internet paths depend on a multitude of ISPs, CDNs and advanced network services. Hybrid and native clouds applications are mostly containerized, so performance can be affected by the communication paths among the microservices, both in the data center and cloud. The total application experience as perceived by the workforce is dependent on the performance of all the components of applications and network connections acting in concert. If one element falters, the whole experience can be impacted.
NetOps and DevOps need to understand the interdependencies among the component applications and tune the enterprise network and internet paths accordingly. A unifying view can only be provided by the network fabric that monitors and analyzes the full stack of interlacing components: from the foundational network data layer to the software-defined WAN to application containers in the cloud. With the workforce accessing applications from literally everywhere, all the time, IT requires pervasive, real-time monitoring of network, internet, and application performance with auto-healing capabilities. This is Deep Network Visibility, driven by software-defined controllers and network analytics that enable action, policy, and automation.
To improve application experience, IT needs tools to record, analyze, and report on network and application activity at a massive scale to build a deep historical data set against which to apply AI and Machine Reasoning tools. Hybrid and cloud applications consist of multiple micro-components connected by east-west traffic in the data center or cloud service. Continuous monitoring and analysis are needed to optimize application experience because many inter-application communication issues are transitory and difficult to replicate. Application performance needs to be recorded for machine analysis to determine recurring issues and root causes. Deep Network Visibility from the perspective of the application requires:
◉ Application experience as measured by ThousandEyes, NetFlow, and AppDynamics.
◉ Dependency graph to the underlying composite application services and infrastructures.
◉ Comprehensive availability and performance data on each of the supporting components such as composite application services, public cloud services, ISPs, networking devices, compute and storage infrastructure.
The irony of having mountains of telemetry and activity logs awaiting analysis by overworked IT teams is that there is too much noise in too much data for humans to deal with in a timely manner. When the volume of data is beyond human scale and below human sensitivity, machine reasoning (MR) can automate the analysis of trillions of bytes of switch and router telemetry, wireless radio fingerprints, and network access point interferences to uncover patterns in the chaos, and turn the findings into actionable insights and automated mitigation actions.
To make full use of the deep historical and real-time data, IT can take advantage of an analytics software stack that can:
◉ Use purpose-built applications to augment human engineers in NetSecOps with Insights into network performance and security vulnerabilities.
◉ Leverage machine-speed analytics and knowledge-base Machine Reasoning Engine (MRE) to unburden NetSecOps from mundane monitoring tasks to focus on proactive digital transformation projects with DevOps.
◉ Achieve massive collection, storage, and analysis of diverse data lakes—collections of anonymized network and application telemetry based on volume, velocity, and variety of data to compare performance and security metrics.
For several decades, Cisco has been building a data lake of worldwide, anonymized customer telemetry in parallel with a knowledge-base of expert troubleshooting experience, both of which are available to machine reasoning algorithms under the command and control of Cisco DNA Center. With Cisco AI Network Analytics, NetOps can, for example, be forewarned of increases in Wi-Fi interference, network bottlenecks, uneven device onboarding times, and office traffic loads in the more traditional data center and campus network environments.
The enterprise networking business seems to always be in a state of flux. Entrants, features, solutions ebb and flow into and out of the market like tides at a beach in Florida. We know that you have come to trust Cisco as your enterprise networking partner and rely on us to ensure that the networking and security tools at your disposal are the sharpest and most fit for purpose in the market. In the spirit of continual improvement, and our goal of delighting our customers, we are happy to announce the following improvements to Cisco DNA Software for SD-WAN and Routing.
Cisco has made substantial changes to Cisco DNA Software for SD-WAN and Routing subscriptions all effective and implemented by the end of December 2021. The changes fall into three distinct areas: Cisco DNA for SD-WAN and Routing tier improvements, expanded bandwidth tiering, and right-pricing the Cisco DNA for SD-WAN and Routing Solution. We’ll discuss each of them in turn.
This section covers changes made to Cisco DNA Essentials for SD-WAN and Routing. Cisco is moving several features previously available in Cisco DNA Advantage down into Cisco DNA Essentials. Specifically, we have moved several Cloud Networking and Security features to Cisco DNA Essentials to enhance our SD-WAN and Routing entry-level offering for small and medium businesses, and to meet the needs of price-sensitive customers. Additionally, we have increased the VPN limitation in Cisco DNA Essentials to 4+1 (User/Management VPNs). The list and chart below speak to the feature additions in Cloud Networking and in Security to Cisco DNA Essentials for SD-WAN and Routing.
Cloud Networking functionality moving to Cisco DNA Essentials
◉ Essential Cloud OnRamp for IaaS, SaaS, and Colo
◉ Multicloud: GCP, AWS, Azure
Security functionality moving to Cisco DNA Essentials
◉ Cisco AMP with SSL proxy
◉ Basic URL filtering
The world is changing and the structure of connectivity between users, businesses, and devices has entered a new dimension. The rate of transformation has accelerated, including major advances in collaboration and access to applications and data from anywhere. However, remote connectivity has enlarged the attack surface for cyber criminals and troubleshooting outside your corporate border is challenging.
Our customers are looking for solutions for hybrid work, providing agility for users to securely connect from work, home and everywhere in between. Businesses must empower their hybrid workforce with seamless access to cloud applications and high-quality collaborative experiences. IT is also tasked with maintaining security, control, and governance across devices, networks, clouds and those applications.
Our latest Networking innovations provide advanced analytics and insights to improve operations for remote IT operators, along with greater integration with storage and cloud providers for more seamless and secure access to applications and data. Learn more about how these innovations can improve the user experiences to support hybrid work environments below.
Most IT engineers can agree that device provisioning for new offices is tedious, time-consuming, and error-prone. Fortunately, our Cisco IT Customer Zero team—which tries out the latest Cisco solutions and integrations to prove value and share experiences—has discovered that it doesn’t need to be that way.
By leveraging the Plug & Play (PnP) capability in Cisco DNA Center, we’ve managed to slash provisioning time by over 50%, while improving the engineer/user experience, reducing configuration issues, and enhancing security.
Before PnP, our process was manual and slow, with a high risk of producing errors. In the weeks before we set up a switch, engineers had to scour a 501-page playbook to find the right configuration for the device model and office size. They would then travel to the office and paste in the appropriate code snippets via the command-line interface (CLI).
During this process, engineers could easily type an incorrect character or miss a line/s of code. These types of mistakes were responsible for the vast majority of Day-1 problems. The process also required engineers to remain for Day-1 support.
Today, Cisco DNA Center’s PnP capability allows us to onboard new sites much faster by automating the onboarding of devices and the configuration of underlay routing (Figure 1). Switches automatically connect to Cisco DNA Center and retrieve the correct template, based on their serial number and tags. Engineers no longer have to engage in the time-consuming activity of searching through the playbook for the right configuration. PnP also reduces the need to type command-line instructions and cut-and-paste blocks of code. We are now able to standardize our configuration with the use of templates and version control. Instead of using Microsoft Word or Excel spreadsheets, we can create templates that are used across multiple devices with the concept of variables allowing us to be adaptable to each device using templates and tags, saving time and ensuring compliance. Finally, with PnP, engineers no longer need to go on-site for Day-1 support.
Cisco DNA Spaces is the world’s most powerful location platform that uses existing Wi-Fi infrastructure to give actionable insights and drive business outcomes. Cisco DNA Spaces IoT services has been transforming how businesses measure and interact with their environment at scale. Cisco IoT services has brought hardware, software, and services together to digitize spatial data into actionable intelligence. Businesses are planning occupancy monitoring, air quality testing, contact tracing, and in-room presence use cases with Cisco DNA Spaces to prepare workspaces for a post-pandemic reopening. Enabling all these use cases require seamlessly consuming a ton of data and working with a plethora of devices. So how does an enterprise monitor the health of their IoT environment in an ocean of devices broadcasting data continuously? Enter, Cisco IoT Services Device Monitoring.
The key components of the solution are comprised of Cisco DNA Spaces IoT Services, Cisco Catalyst 9800 Series Wireless Controllers, Cisco Access Points, and our IoT Partner Ecosystem. The specific roles of each piece of the solution are described below:
Add-ons extend the latest technology to legacy systems, like how my old TV turned smart overnight with an additional streaming player. It is even better when the supplements work in cohesion with the primary products to deliver a seamless experience. Imagine if you could utilize the same remote to operate your TV and streaming player.
The Cisco Catalyst 9000 series wired and wireless devices enable enterprises to unlock newer network infrastructure possibilities. For instance, these platforms conduct deep packet inspection (DPI) and provide data streams for services such as the Cisco AI Endpoint Analytics and Application Assurance on the Cisco DNA Center. With Endpoint Analytics, customers are gaining unprecedented endpoint visibility, which is a crucial first step in implementing zero-trust security within the workplace and confidently deploying network segmentation without the risk of shutting down critical network services.
However, several organizations still have a portion of their network infrastructure that has not been migrated to the Cisco Catalyst 9000 series platforms. Those legacy infrastructures cannot perform the deep packet inspection required for advanced analytics. We are introducing the Cisco DNA Traffic Telemetry Appliance to bridge the gap between the new and existing deployments.