Showing posts with label Wireless. Show all posts
Showing posts with label Wireless. Show all posts

Thursday, 12 May 2022

Latest Innovations in Cisco DNA Software for Wireless

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam

Cisco has continued to deliver on its promise of innovation in our Cisco DNA software for Wireless subscription. Networking demands are increasing and trends in technology are changing, like the need for a safe and productive hybrid work environment. By deploying the latest innovations in Cisco DNA Advantage software for Wireless along with Cisco DNA Center, you can provide your workforce with improved wireless stability, performance, and security. This leads to increased worker productivity, no matter where they are working from.

What’s new?

Wireless 3D Analyzer: Gain a completely new perspective of the typically invisible Wi-Fi radio frequency (RF). 2D maps that show AP placement on the floor and how RF is propagated from a top-down view no longer cut it because we live in a 3D world. As a network provider, in order to ensure that there is proper wireless coverage in every floor and building, you would need the ability to view wireless RF at different angles in order to discover and resolve RF coverage holes. The wireless 3D map solves these issues by creating an immersive experience that accurately replicates your floor map and all obstacles. This is an incredible addition to our monitoring and network deployment feature set.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 1: Wireless 3D Analyzer

AI-Enhanced RRM: Leverage artificial intelligence to optimize your wireless performance. Traditional radio resource management (RRM) does not consider trends in usage and critical work hours during the day. Radio optimizations are reacting to static threshold alarms as they occur. RRM doesn’t consider the dynamic properties of a wireless network – like the addition of cubicles, furniture, more devices, interference etc. AI Enhanced RRM evaluates two weeks worth of RF data with artificial intelligence to discover patterns and then proactively optimize your wireless before issues occur. This leads to stable wireless connectivity leading to consistent end user experience.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 2: AI-Enhanced RRM

AP Performance Advisories: As your wireless network grows to dozens or hundreds of access points,  underperforming access points can easily go unnoticed. AP Performance Advisories uses machine learning to measure and benchmark client experience parameters across all of your access points. It then flags any underperformers and lists them on the advisory dashboard. This helps identify and isolate poor-performing APs based on end-user experience and enables proactive AP performance optimization efforts to maintain client experience. You can monitor KPIs for these poor-performing APs and investigate further. You can get a view of the top 3 poor-performing APs in a screenshot helping to prioritize which ones to troubleshoot.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 3: AP Performance Advisories

Intelligent Capture: Resolve even the most difficult wireless issues with technical insight into metrics from both a client and access point perspective. It provides support for a direct communication link between Cisco DNA Center and access points, so each of the APs can communicate with Cisco DNA Center directly. Using this channel, Cisco DNA Center can receive packet capture (PCAP) data, AP and client statistics, and spectrum data, allowing you to access data from APs that is not available from wireless controllers.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 4: Intelligent Capture

How can I get these features and more?


If you already have a Cisco DNA Advantage subscription in Wireless along with Cisco DNA Center, you will get to utilize these features at no additional cost to you.

If you do not have a Cisco DNA Advantage subscription or if you have a Cisco DNA Essentials subscription, the time to upgrade is now. We will continue to innovate and add more wireless features to our advantage tier.

Source: cisco.com

Saturday, 30 October 2021

Cisco wireless 3D analyzer: A game changer in simplifying WiFi planning, monitoring, and troubleshooting

Wireless connections are ubiquitous and have become a part of our daily lives. But planning and then maintaining a Wi-Fi network, optimized for today’s radio coverage and capacity requirements, may not be a daily or even yearly task for an otherwise seasoned network administrator.

While wireless technologies are ubiquitous, they still interact with the physical environment.  Architecting the best coverage for a specific environment depends on many different factors like obstacles (walls, doors, windows), building geometry and materials as well as the number of users and intended usage. Looking across verticals demonstrates a wide range in complexity that can be encountered within different environments. For example, covering a moderate sized Enterprise Office space could be as simple as correctly placing some APs with omni-directional antennas, while covering a high ceiling warehouse means directional antennas to cover the space and more engineering to get it right. The challenge is that RF, unless visualized somehow, is invisible.  Seeing the RF in enough context to determine the correct angles, power, coverage, and capacity needs requires good tools.

Our new solution

Cisco Wireless 3D Analyzer changes the overall planning and maintenance experience for network operators. It provides a visual 3D immersive experience that simplifies many of the aspects of the processes mentioned above. At the same time its deep analysis ensures insights into the key success factors required.

Typical workflow for a new site looks like this:

◉ Planning, laying out the deployment at scale and analyzing the proper placement.

◉ Deployment of the equipment and on-boarding the site.

◉ Coverage validation, ensuring that the coverage meets the designed requirements.

◉ Tuning of the network configurations to optimize the coverage and capacity.

Adding the floor map to the management server to monitor static 2D heat maps.

Cisco Wireless 3D Analyzer allows the user to perform these planning and deployment operations remotely on their laptop well before ever placing products on the floor space. Post deployment, the Cisco Wireless 3D Analyzer correlates the existing telemetry data along with the predictive results to provide a unified view of everything needed to dynamically monitor the complex interactions occurring daily on the network. This drastically reduces the OPEX needed for the same operations, while providing a simplified and intuitive user experience.

Solution building blocks

Here are the main components of the solution

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 1 – 3D Analyzer Solution Building Blocks

Cisco Wireless Network is the overall network infrastructure consisting of APs, sensors, switches, wireless controllers, Cisco Identity Services Engine (ISE) and other network resources. It is needed to provide the edge services for the client devices.

Cisco DNA Center is the single point in the system that provides Day 0 with automation of provisioning and on-boarding tasks to life cycle monitoring/management and analysis. It also imports floor maps of the customer buildings.

Cisco Wireless 3D Analyzer is a web-app that runs on the network administrator’s browser. Moreover, it connects to Cisco DNA Center through https. The system uses state of the art 3D visualization and General-Purpose GPU technologies to build predictive models of the floorspace’s wireless environment. It allows the user to have 3D visual representations of the network coverage, its capacity, and many related insights on the same.

Cisco Wireless 3D Analyzer brings the wealth of wireless telemetry data already available in Cisco DNA Center and combines this with the powerful context that the interactive 3D model can provide. The analyzer not only allows the user to see all this information in context, but also allows the powerful analysis engine to combine thousands of data points and provide actionable conclusions. The system minimizes the manual tuning, requiring a site visit, to optimize the network. The systems, using over-the-air measurements, allows verification of proper operations or gives clear indications on what will require some tuning, not just on Day 0, but for the life cycle of the deployment to Day n.

How does it work?


The Cisco Wireless 3D Analyzer provides both Life Cycle Management and Planning within an immersive 3D operational experience.

Planning

Given a CAD or Ekahau Project file, that contains data regarding walls and materials, the app generates a 3D model of the environment and uses predictive modeling to display the RF coverage from the floor to the ceiling. Input for the model relies on telemetry available to accurately describe the current power, channels, and even antenna coordinates dynamically to render the environment. The powerful analysis engine looks at the millions of interactions between the access points, client devices, sensor APs, and the described physical environment across the 3D floor area. The 3D Analyzer can dynamically identify and isolate for view any service level issues discovered.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 2 – Planning Prediction (iso-surfaces view)

Maintenance

Unlike a traditional static 2D heat map, the Cisco Wireless 3D Analyzer also correlates real time data from the network. This is possible through the Cisco DNA Center telemetry and the Catalyst stack architecture, sensors, and assurance data. It allows correlation of the predictive results with the actual measured ground truth in the 3D floor map. This not only provides visual assurance of the accuracy, but a dynamic way to alert to harmful changes in the physical world.  The 3D environment is augmented with the access points’ runtime health score as well as other critical data at multiple levels within the “virtual reality”.  See the health scores below inside the colored tear drops.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 3 – Prediction and Measurement (point cloud view)

Also please note that available sensor measurements are also integrated into the overall big picture of your network.  Sensors are shown above in the circles labeled S.

The below chart illustrates the main data flows driving the 3D Analyzer’s view of the physical world. It’s a lot of correlation, and an unprecedented view of the network’s context.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs

The Cisco Catalyst network provides live data to Cisco DNA Center, which is drawn on by Cisco Wireless 3D Analyzer. Using the floor maps, actual inventory HW models and current configurations, the app can generate the predictions and their correlation with the live data, providing a full 3D context rich visualization environment.

Key use cases


Here are a few use cases that Cisco believes brings new efficiencies and accuracy to your view of the network.

Visual insights

The Cisco Wireless 3D Analyzer correlates the predicted data along with telemetry inputs, analyzes the results, and provides insights into the networks behavior. In the example below, the system detected that 67% of the floor’s RSSI coverage falls below the user-configured KPI (Key Performance Indicator) of -70dBm. With a single mouse click on the Insight, the environment is configured instantly to highlight the exact location of deficiency, instantly providing a clear and actionable view.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 4 – Visual Insights

Detection of Channel Interference

On a wireless network, interference is the opposite of performance.  By changing the view to “interference” the visualization now highlights areas where the network interferes with itself.  In addition, the APs and Channel selections responsible are highlighted clearly to quickly provide context and identify the source.

The 3D analyzer not only detects and alerts to these issues, but it also allows the administrators to safely model solutions in real time without making changes to the configurations in the physical world.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 5 – Co-Channel Interference Detection

The system can detect multiple types of interferences (co-channel, adjacent-channel, neighbor), together with interferences coming from other floors. Here is a multi-floor 3D representation of coverage that could create interference.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 6 – Multi-floor coverage 3D visualization

High Ceiling Environment Analysis

High ceiling environments, such as a warehouse, constitute challenging use cases, often mis-treated in design practice. Increasingly, it is not enough to only provide good coverage at the floor level. With automation and operations taking users to all levels within the physical environment, it has become increasingly important to understand the effectiveness of coverage from the floor to the ceiling. A 2D map can show the RF at an assumed user level but visualizing the coverage at every level in between can become a chore. The 3D visualization not only displays this but will allow the visualization to show as a scan with 6-inch resolution in elevation slices. The resulting visualization allows the user to visualize different configurations and effective solutions based on the modeled environments data in terms of shelves, racks, boxes, and capacity levels.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 7 – Warehouse view

The coverage predictions consider all these obstacles, together with the actual antenna data to provide holistic floor views. Optimal efficiency is not an accident, it is planned. Through the lifecycle of the network, plans can and do change. The 3D analyzer can help watch it for you.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 8 – Warehouse point cloud view

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 9 – Automatic Elevation Scanner

The picture above shows an elevation scanning playback. It allows users to get insights about coverage at each elevation from floor to ceiling.

First Person View 

Invoking the first-person view allows the administrator to step into the modeled environment and view it from the user plane.  The constant telemetry readouts while moving through the environment and mousing over the deployed assets all lead to an unprecedented ability to understand the physical environment.  All this without even getting in the car.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 10 – First Person View

Antenna Propagation

Challenging high ceilings, or high-density environments often require specific antennas to achieve desired results. It can be difficult for many people to visualize how a particular antenna type will fit into the coverage environment. With the Cisco Wireless 3D Analyzer this becomes easy. The administrator can visualize the coverage patterns at all RSSI values and see how an angle could be optimized. Moreover, the administrator can check how a different antenna can provide the optimal solution to the challenge.

Cisco Wireless 3D Analyzer, Cisco Wireless, Cisco Prep, Cisco Preparation, Cisco Guides, Cisco Learning, Cisco Career, Cisco Jobs
Figure 11 – Antenna propagation view

Being able to visualize changes to existing or new solutions within a known environment not only allows for quick assessments for fluid change management, but also provides a safe environment to build confidence and skills in the management staff. Wireless is much more fun when you can see it. By the way, you get all of this “before” ever setting a foot on the site.

Source: cisco.com

Saturday, 24 July 2021

WiFi-6E 6GHz- WiFi Spectrum Unleashed

WiFi-6E 6GHz- WiFi Spectrum, Cisco Networking, Cisco Tutorial and Material, Cisco Learning, Cisco Career, Cisco Guides, Cisco Preparation, Cisco WiFi

In April 2020, the Federal Communications Commission (FCC) allocated 1,200 megahertz of spectrum for unlicensed use in the 6GHz band. That was the largest fleet of spectrum approved for WiFi since 1989. This Opening of the 6 GHz band more than doubles the amount of spectrum available for Wi-Fi, allowing for less congested airwaves, broader channels, and higher-speed connections and enabling a range of innovations across industries. Since the FCC decision to open the 6 GHz band, 70 countries with 3.4B people have approved or have 6 GHz regulations under consideration (Source- WiFi-Alliance)

WiFi-6E 6GHz- WiFi Spectrum, Cisco Networking, Cisco Tutorial and Material, Cisco Learning, Cisco Career, Cisco Guides, Cisco Preparation, Cisco WiFi

Currently, as organizations increase their use of bandwidth-hungry video, cope with increasing numbers of client and IoT devices connecting to their networks and speed up their network edge. As a result, wireless networks are becoming oversubscribed, throttling application performance. This frustrates all network users by negatively impacting the user experience, reduces productivity.

Throughout this post, I have tried to cover the basics and the operating rules for Wi-Fi 6E in the 6 GHz band.

What is the “E” in Wifi6E?


The 802.11ax standard (Wi-Fi 6) also operates in the 2.4 GHz and 5 GHz bands. Due to this, Wi-Fi in the 6 GHz band will be identified by the name of WiFi-6E. This naming was chosen by the WiFi-Alliance to avoid confusion for 802.11ax devices that also support 6 GHz. The “6” represents the sixth generation of Wi-Fi and the “E” represents extended.

WIFI-6E: Increase in number of channels


The 6 GHz band represents 1200 MHz of spectrum that will be available from 5.925 GHz to 7.125 GHz. Knowing that 2.4 GHz band only had 11 channels, with the new spectrum, Wi-Fi will have access to 59 20-MHz channels, 29 40-MHz channels, 14 80-MHz channels, and 7 160-MHz channels. In addition to 2.4GHz and 5GHz, this not only represents a lot of channels, but also a lot of wide channels to operate on high speeds.

Advantage of a huge spectrum


WiFi-6E 6GHz- WiFi Spectrum, Cisco Networking, Cisco Tutorial and Material, Cisco Learning, Cisco Career, Cisco Guides, Cisco Preparation, Cisco WiFi

Wi-Fi has always had a very less amount of spectrum. Typically, Wi-Fi had only 80 MHz of spectrum in the 2.4 GHz band and 500 MHz in the 5 GHz band. DFS channel occupy a part of the 500MHz on 5GHz band.

This left very limited contiguous spectrum. It made it difficult to find or enable 80 MHz or 160 MHz channel width, but the maximum Wi-Fi data speeds can only be achieved with these channel widths.

With the 59 20-MHz channels, Wi-Fi 6E will effectively remove congestion issues. At least for the foreseeable future, there will always be at least one 20 MHz channel available without congestion. Thanks to the contiguous spectrum and the 14 80-MHz channels or the 7 160-MHz channels to choose from, a radio will be able to find a channel available, free of congestion. This enables the technology to deliver the highest speeds.

Background on Wi-Fi Standards


Two main groups are responsible for shaping Wi-Fi’s evolution. The Wi-Fi Alliance and IEEE. The IEEE 802.11 defines the technical specifications of the wireless LAN standard. The WiFi-Alliance focuses on certification of Wi-Fi devices for compliance and interoperability, as well as the marketing of Wi-Fi technology

Over time, different classifications of WiFi networks were given different naming conventions by the Wi-Fi Alliance. Rather than “802.11b”, it’s just “WiFi 1.” Much like how mobile phone companies refer to 3G and 5G as different network speeds even though the term is almost always just a marketing tool. This classification is supposed to help make it easier for consumers to understand — instead of understanding a whole alphabet soup, users can just look for “WiFi 4” or “WiFi 6” as what they need.

WiFi-6E 6GHz- WiFi Spectrum, Cisco Networking, Cisco Tutorial and Material, Cisco Learning, Cisco Career, Cisco Guides, Cisco Preparation, Cisco WiFi

The IEEE 802.11ax standard for high efficiency (or HE) covers MAC and PHY layer operation in the 2.4 GHz, 5 GHz and 6 GHz bands.

IEEE Rules for WIFI-6E


HE (High Efficiency) only operation in the 6 G

WiFi-6E 6GHz- WiFi Spectrum, Cisco Networking, Cisco Tutorial and Material, Cisco Learning, Cisco Career, Cisco Guides, Cisco Preparation, Cisco WiFi

One of the most important decisions made by the IEEE 802.11ax group is that it disallows older generation Wi-Fi devices in the 6 GHz band. This is very important because it means that only high efficiency 802.11ax devices will be able to operate in this band.

Generally, upcoming Wi-Fi standards have always provided backward compatibility with previous standards. This was a boon to customers as well as vendors, since network equipment doesn’t need to be completely overhauled at each new standard. The flip side to this is it will be a source of congestion on the protocol, since legacy equipment is also sharing the available spectrum with the newer devices. In the 6 GHz however, only new high efficiency devices will be allowed to operate.

When using the analogy of road transport to describe Wi-Fi, the 2.4 GHz and 5 GHz band can be compared to congested roads where both fast and slow vehicles travel, while the 6 GHz band is the equivalent of a new, large highway that only allows the fastest cars.

Fast Passive Scanning


WiFi-6E 6GHz- WiFi Spectrum, Cisco Networking, Cisco Tutorial and Material, Cisco Learning, Cisco Career, Cisco Guides, Cisco Preparation, Cisco WiFi

With 1200 MHz of spectrum and 59 new 20 MHz channels, a station with a dwell time of 100 ms per channel would require almost 6 seconds to complete a passive scan of the entire band. The standard implements a new efficient process for clients to discover nearby access points (APs). In Wi-Fi 6E, a process called fast passive scanning is being used to focus on a reduced set of channels called preferred scanning channels (PSC). For 6 GHz-only operation, a specific subset of channels will be identified as preferred scanning channels (PSC) where the primary channel of a wide channel BSS should reside, limiting the channels a client needs to scan to discover a 6 GHz-only AP. PSCs are spaced 80 MHz apart, so a client would only need to scan 15 channels

Out of band discovery


Dual-band or tri-band APs operating in the 6 GHz band as well as in a lower band (2.4 GHz or 5 GHz) will be discoverable by scanning the lower bands. In the lower band, APs will include information about the 6 GHz BSS in a reduced neighbour report in beacons and probe response frames. The client will first go into the lower bands, discover the AP there and then move to the 6 GHz band. This will reduce the probe requests that are sent by stations just trying to find APs because it will not be allowed unless it is a PSC channel.

Wi-Fi 6E Channelization


WiFi-6E 6GHz- WiFi Spectrum, Cisco Networking, Cisco Tutorial and Material, Cisco Learning, Cisco Career, Cisco Guides, Cisco Preparation, Cisco WiFi

The 802.11ax standard defines channel allocations for the 6 GHz band. This allocation determines the center frequencies for 20 MHz, 40 MHz, 80 MHz, and 160 MHz channels over the entire 6 GHz band. However, regulatory domains specifications take precedence over the IEEE specification and channels that are falling on frequencies or overlapping on frequencies that are not supported in a regulatory domain cannot be used.

AFC and Avoiding Incumbent Users


The FCC defines two types of device classifications with very different transmit power rules. The goal here is to avoid potential interference with existing 6 GHz incumbents. Several classes of APs are being defined to adapt to the U-NII bands and conditions where they will be operating. The standard power (SP) AP and the low power indoor (LPI) AP and very low power (VLP) AP. The low power APs, as the name implies, have reduced power levels since they are only used indoors.

The outdoor, or standard power APs, have a serious potential of interfering with existing 6 GHz users in the geographic area. Fixed satellite services (FSS) used in the broadcast and cable industries might already have a license for the channels in use. Therefore, any new unlicensed users (Wi-Fi) must ensure they do not impact the current services. The answer to this is to create a way to coordinate the spectrum use to avoid interference issues. The basic concept would be that a new wireless device (access point) will consult a registered database to confirm its operation will not impact a registered user. For 6 GHz operation, this is called an Automated Frequency Coordination (AFC) provider.

Standard power APs must use an AFC service to protect incumbent 6 GHz operations from RF interference.

Source: cisco.com

Sunday, 25 April 2021

Securing the air with Cisco’s wireless security solution

With the proliferation of IoT and BYOD devices, wireless security is top-of-the-mind for network administrators and customers. Globally, there will be nearly 628 million public Wi-Fi hotspots by 2023, which is almost four-fold increase from 2018. This will increase the attack surface and hence the vulnerability for the network. The total number of DDoS attacks is predicted to reach 15.4 million by 2023, more than double the number from 2018. Due to inherent open nature of wireless communications, wireless LANs are exposed to multitude of security threats, including DoS flood attacks.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material
Number of DDoS attacks (Source: Cisco Annual Internet Report, 2018–2023)

Cisco Next Generation Advanced Wireless Intrusion Prevention System (aWIPS) is one of the solutions in Cisco’s multi-pronged approach to providing wireless security. aWIPS is a wireless intrusion threat detection and mitigation mechanism that secures the air. aWIPS along with currently offered Rogue management solution provides security against DoS attacks, management frame attacks, tool-based attacks and more. 

Solution Components


aWIPS and Rogue management solution comprises of Cisco access points, Wireless LAN controllers and Cisco DNA Center. This solution is supported on all 802.11ax/802.11ac wave2 Cisco access points and Cisco 9800 series controllers.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material

Access Points: Access points detect threats using signature-based techniques. Access points can operate in monitor, local, and flex-connect mode. In monitor mode, radios continuously scan all channels for any threats, but they don’t serve any clients. In local and flex-connect mode, access point radios serve clients and scan for threats on client serving channels. On non-serving channels they would do best-effort scanning for any possible threats.  With Cisco’s Catalyst 9130 and 9120 WiFi 6 access points, there is an additional custom RF ASIC radio that continuously monitors all channels for any threats, while the other radios serve the clients. With this dedicated radio, we significantly improve our threat detection capabilities.

Cisco 9800 series controllers: Cisco WLAN controllers configure the access points and receives alarms and rogue information received from access points. It sends the consolidated reports to Cisco DNA Center.

Cisco DNA Center: Cisco DNA Center provides simple workflows that allow users to customize aWIPS signatures and rogue rules. It constantly monitors, aggregates, corelates and classifies all the rogue events and alarms received from all the managed access. Using network intelligence as well as topology information, DNA Center accurately pinpoints the source of attack, and allow users to contain the attack before any actual damage or exposure occur.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material

Intuitive, Simple and Secure


Cisco aWIPS and Rogue management solution is intuitive and simple to configure, but has advanced signature-based techniques, network intelligence and analytics to detect threats. With Cisco aWIPS and Rogue management solution, the network is secure against all types of on-the-air wireless attacks.

Denial of Service:

Denial of service attacks aim to cause resource exhaustion and thus deny legitimate users access to the wireless service. Due to the nature of wireless communication, the DoS flood attacks are very prevalent in the network.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material
DoS flood attacks snapshot (3-month period) from a wireless network

With aWIPS, we detect, report and provide location of following DoS attacks:

◉ Targeted towards access points: Access points have limited resources and DoS flood attacks like authentication flood, association flood, EAPOL-start flood, PS Poll Flood, probe request flood, re-association flood can overwhelm access point.

◉ Targeted towards infrastructure: DoS flood attacks like RTS flood, CTS flood or beacon flood causes RF spectrum congestion and thus block legitimate clients from accessing wireless network.

◉ Targeted towards clients: Attacks like de-authentication flood, disassociation flood, broadcast de-authentication flood, broadcast disassociation flood, EAPOL logoff flood, authentication failure attack, probe response flood, block ack flood can cause valid clients to disconnect or can prevent them from joining the network, thus disrupting wireless service.

◉ Targeted to exploit known vulnerabilities/bugs: Attacks using fuzzed beacon, fuzzed probe request, fuzzed probe response, malformed association request, malformed authentication are targeted to exploit known vulnerabilities/bugs in wireless devices, thus causing crash, leading to denial of service.

aWIPS detects Airdrop session, which can present security risks as these peer-to-peer connections are unauthorized in the corporate settings. As part of aWIPS solution, we also alert user of any invalid MAC OUI use in the network.

Impersonation and Intrusion

Rogue management provides protection against AP impersonation, Honeypot AP and Rogue-on-wire. Using auto-containment/manual containment, any rogue attacks can be thwarted before actual damage occurs.

Not one size fits all


Every network is different, and what is deemed as acceptable and expected behavior on one network need not always be acceptable for another. With Cisco DNA Center, we provide following configuration knobs to allow our customers to fine-tune aWIPS signature and Rogue rules based on their network needs:

1. Flexibility to select signatures.
2. Configurable thresholds for signatures.
3. Configurable threat levels

These configuration knobs allow one to configure aWIPS signatures to fit their network characteristics.

Users can add Rogue rules to customize Rogue detection and management. The rules allow users to configure threat levels and conditions like SSID, RSSI, encryption and rogue client count.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material
aWIPS signature customization

Cisco DNA Center provides simple workflows that enable customers to customize aWIPS signatures and Rogue rules.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material
Rogue rule customization

Attack Forensics


Sometimes there is an overwhelming need for evidence and post-analysis to get deeper understanding of the attacks in the network. With Cisco aWIPS you have an option to enable forensic capture per signature. When forensic capture knob is enabled for a signature, access points would capture raw packets during the attack timeframe and send it to DNA Center where the customers can view these packet captures. These packet captures can be used to analyze what is triggering the attack.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material
Forensic Capture

Cisco DNA Center: The eye that sees them all


Using Cisco DNA Center, one can not only configure aWIPS and customize as per their needs, but can also view the alarms, along with location of threat, threat MAC details, all in single pane of glass. Gone are the days when the administrator had to go through each wireless LAN controller to get this level of detail. DNA Center aggregates, correlates and summarizes the attacks across the managed network on the unified security dashboard. In addition to current active alarms, DNA Center also stores historic data for users to view and analyze.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material
Rogue/aWIPS alarm dashboard

Threat 360: The who/what/when/where?


Cisco DNA Center Threat 360 view provides detailed view on each of the alarms:

1. Context of attack: Information on attacker, victim and detecting entities.
2. Threat level: Severity of the attack
3. Location and Time of the attack.

Cisco Prep, Cisco Preparation, Cisco Learning, Cisco Career, Cisco Certification, Cisco Guides, Cisco Tutorial and Material
Threat 360

This kind of visualization of threats have gotten our customers excited about Cisco security solution package. Our customers love this unified dashboard with threat 360 view, and they are deploying DNA Center with Rogue package across multiple geographical locations.

Source: cisco.com

Thursday, 11 February 2021

Cisco introduces Fastlane+ with advanced multi user scheduling to revolutionize real-time application experience

Cisco Tutorial and Material, Cisco Learning, Cisco Guides, Cisco Learning, Cisco Certification, Cisco Preparation

Cisco and Apple continue to work together to deliver better experiences for customers through collaboration and co-development. Our latest project, Fastlane+, builds on the popular Fastlane feature by adding Advanced Scheduling Request to take QoS management a step further by scheduling and carving out airtime for voice and video traffic on Wi-Fi 6 capable iPhone and iPad devices. This facilitates a superior experience with latency-sensitive collaboration applications such as WebEx and FaceTime.

What is FastLane+, and why do we need it?

First and foremost, let’s take a look at the motivation behind Fastlane+. The 802.11ax standard introduced OFDMA and MU-MIMO as uplink transmission modes to allow scheduled access-based uplink transmissions. This allows the access point (AP) to dynamically schedule uplink OFDMA or MU-MIMO based on the client’s uplink traffic type and queue depth. This decision is made on a per Access Category basis and at the start of every Transmit opportunity (TXOP) with OFDMA used for latency centric low bandwidth applications. In contrast, MU-MIMO is used when higher bandwidth is required.

With Fastlane+, the Cisco AP learns the client’s uplink buffer status using a periodic trigger mechanism known as Buffer Status Report Poll (BSRP). Nevertheless, the client devices may not be able to communicate their buffer status to the AP in a timely manner due to MU EDCA channel access restrictions and possible scheduling delays in dense environments. Additionally, the AP may not always be able to allocate adequate resource units that fulfill application requirements. Because of this, a better approximation of uplink buffer status is critical for efficient uplink scheduling.

Next, let’s compare 802.11ax standards-based approaches for uplink scheduling- UL OFDMA and Target Wakeup Time (TWT). As highlighted in the chart below, with UL OFDMA, the AP has absolute control over uplink scheduling, while in the case of TWT, the client can pre-negotiate TWT service periods. A compromise thus needs to be made between the AP and client to improve uplink scheduling efficiency in a dense RF environment with latency-sensitive traffic.

Cisco Tutorial and Material, Cisco Learning, Cisco Guides, Cisco Learning, Cisco Certification, Cisco Preparation

Fastlane+ is designed to approximate better the client’s buffer status based on application requirements indicated by the client. This estimation policy significantly reduces BSRP polling overhead as compared to the default BSR based UL OFDMA scheduling. Along with obtaining key parameters for active voice and video sessions to improve uplink scheduling efficiency, Fastlane+ also solicits periodic scheduling feedback from the clients.

In a nutshell, Fastlane+ enhances the user experience for latency-sensitive voice and video applications in a high-density user environment by improving the effectiveness of estimating the uplink buffer status for the supported 802.11ax clients.

Key considerations for Fastlane+


Fastlane+ is initiated for latency-sensitive voice and video applications like WebEx, FaceTime, and others, whose traffic characteristics can be better approximated. Fastlane+ is indicated in DEO IE by the AP and Advanced Scheduling Request (ASR) specific information from the clients, including ASR capability, ASR session parameters, and ASR statistics. This information is sent using Vendor-Specific Action frames that are protected using PMF (protected management frame).

Latency becomes a concern only when there is enough contention in the medium due to high channel utilization. Consequently, Fastlane+ based uplink TXOPs are allocated only when the channel utilization is higher than 50%.

System overview for Fastlane+


The diagram below shows a bird’s-eye view of an end-to-end system to support Fastlane+. Fastlane+ specific configurations can be managed from the controller’s GUI and CLI. Uplink Latency statistics provided by the clients to the AP are also displayed on the controller. These latency statistics are on a per client basis and triggered with/without an active ASR session.

Cisco Tutorial and Material, Cisco Learning, Cisco Guides, Cisco Learning, Cisco Certification, Cisco Preparation

Fastlane+ benefits:


To better understand the benefits of Fastlane+, let’s first define key performance indicators of a typical voice and video application. Mean opinion score (MOS) is a standard measure for quality of experience for voice applications. It is quantified on a scale of 1 – 5, with 5 being the highest and 1 lowest. To put things in perspective, 3.5 is the minimum requirement for service provider grade quality.

For measuring video quality, we use the Delay factor. This evaluates the size of the jitter buffer to eliminate the video interruptions due to network jitter. The lower the delay factor (in milliseconds), the better the video quality.

Cisco Tutorial and Material, Cisco Learning, Cisco Guides, Cisco Learning, Cisco Certification, Cisco Preparation

Test considerations:


Results below are from a typical collaboration application with simulation tests performed under a high channel utilization and controlled RF environment. 16 numbers of Wi-Fi 6 capable iPhone in 80Mhz bandwidth were used.

Cisco Tutorial and Material, Cisco Learning, Cisco Guides, Cisco Learning, Cisco Certification, Cisco Preparation

Cisco Tutorial and Material, Cisco Learning, Cisco Guides, Cisco Learning, Cisco Certification, Cisco Preparation

Cisco Tutorial and Material, Cisco Learning, Cisco Guides, Cisco Learning, Cisco Certification, Cisco Preparation

Adios to choppy voice and video calls


With Fastlane+, you get a better Wi-Fi experience when you are collaborating with friends and colleagues. It doesn’t’t matter if you are in highly congested RF environments such as schools, offices, high-density housing, shopping malls, airports, or stadiums; Fastlane+ has you covered. So, when we’re all ready to come back, the network will be ready and waiting.

Fastlane+ is enabled by default on 802.11ax capable iPhone and iPad devices running iOS 14 or later. On the infrastructure side, it is currently supported on the Cisco Catalyst 9130 Access point. On AireOS WLC platforms, the 8.10 MR4 (8.10.142.0) release has CLI based support of the feature. On Catalyst 9800 Series WLC platforms, the 17.4.1 release has CLI and GUI (client data monitoring) support. Whereas, configuration tab in GUI will be in later releases. Please note, the Fastlane+ feature is listed as “Advanced Scheduling Request” in the CLI and GUI.

Tuesday, 10 November 2020

Experience the Future with Cisco and the Internet of Things

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Guides, Cisco Learning, Cisco Prep

It’s the year 1950, and I’m asking you what you imagine technology would be in 70 years; what would you say? My guess is you proceed to list out some science-fiction-like answers such as the existence of space exploration programs, maybe artificial intelligent robots, or perhaps the invention of some all-knowing neural network that enlightens humankind through accessible information. While such ideas may have been on the cusp of science-fiction at the time, it’s incredible to realize that we are in the generation where many of these innovations not only exist but are customer-ready today!

Oh, and by the way, remember that “all-knowing neural network” you had mentioned? This is what we presently refer to as the internet and, of course, is what you are using to access this blog at this very moment. Despite how much of a technological breakthrough the internet was during its invention in 1983, it has become such an everyday tool, and it just doesn’t spark the same excitement as it once did.

Let me be that unwarranted catalyst and re-ignite that internet excitement by introducing a new generation of internet-powered technology. A generation of technology that can harness the limitless knowledge of the internet and engrain it into inanimate objects connecting us in a way never thought possible. I am referring to the Internet-of-Things (IoT), a technological innovation spearheaded by Cisco and its state-of-the-art Application Hosting on the Catalyst Access Points (AP) platform.

What is the Internet of Things?

The Internet-of-Things is a concept where a wireless network is leveraged for communication with smart devices to accomplish tasks in a more simplified, efficient, and often automated manner. In fact, many IoT products probably have already found their way into your home already. These products come in all shapes and sizes, but some examples could be a voice-activated speaker such as an Amazon Alexa, a mobile application-controlled thermostat such as a Nest Thermostat, a motion-activated doorbell camera such as the August Doorbell Cam, or more excitingly, a voice triggered music playing salt dispenser such as the SMALT!

Other than the salt-dispenser (which actually exists), these are all products that, due to their simplicity and usefulness, have become seamlessly integrated into many of our lives.

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Guides, Cisco Learning, Cisco Prep
Figure 1: Modern Internet-of-Things products leveraging a wireless network.

So, if IoT already exists, what is Cisco’s role in this field?

Think about how IoT products work, and you’ll realize it requires a robust wireless network to connect the IoT endpoints to the information it needs to operate. While a single wireless router can easily accomplish this for a typical household size deployment, the challenge is how we can execute this at an enterprise level, where hundreds to thousands of IoT devices must work together to form a single solution. Without a proper management infrastructure to provide visibility, serviceability, and security, IoT at scale can be a complete nightmare to deploy and manage.

Cisco’s Internet of Things Solution


Application Hosting on the Catalyst Access Points and Cisco’s intent-based networking platform, Cisco DNA Center is the solution that solves this problem. This integration allows users to leverage Cisco DNA Center to deploy custom IoT applications directly onto docker containers within Cisco’s Catalyst Wi-Fi 6 access points. This integration with Cisco DNA Center solves the problem of visibility and serviceability at scale by taking on the applications’ life cycle manager’s role and allowing users to take advantage of their existing Cisco wireless infrastructure for IoT communication.

During Day 0, a user simply uploads the IoT application onto Cisco DNA Center, and from there, can choose what locations to deploy the application. From Day 1, applications throughout an entire network can now be easily monitored and maintained through a GUI and even upgraded by simply uploading then deploying a newer version of the IoT application. With this integration with Cisco DNA Center, IoT application management has never been easier!

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Guides, Cisco Learning, Cisco Prep
Figure 2: Cisco DNA Center’s simplistic IoT application deployment workflow.
 
After deploying the IoT application onto the access points, the application then begins communication with its application server, leveraging each access point as an IoT gateway to communicate with surrounding IoT devices. This communication with surrounding IoT devices happens through an IoT USB connector inserted into the Cisco Catalyst access point, which can broadcast anything from Zigbee to BLE to vendor-specific proprietary RF protocols, providing true versatility to IoT solutions possible.

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Guides, Cisco Learning, Cisco Prep
Figure 3: Application Hosting on the Catalyst Access Points IoT Topology.

What about the IoT Application itself?


This is where things get exciting! Cisco is now open for partnerships with third-party IoT development companies, providing them with the opportunity to integrate their IoT solutions with Catalyst access points. While the development of IoT applications may not be a simple feat, Cisco has streamlined the process by creating an entire website, DevNet, with the sole purpose of supporting third-party application development. With DevNet, you now have an intuitive step-by-step guide that will teach you how to go from writing a basic “Hello World” application to creating an innovative end-to-end IoT solution capable of solving real-world problems!

The marketplace of IoT Technology


Once the application has been developed, as a partner, you can then join the Solution Partner Program, which allows you to post your IoT solution directly onto DevNet. Essentially, Cisco aims to create a whole marketplace of ready-for-deployment IoT solutions, providing customers with a one-stop-shop to browse, discover, then deploy IoT solutions that best fit their niche business needs.

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Guides, Cisco Learning, Cisco Prep
Figure 4: Cisco Solution Partner Program.

Together, Application Hosting, Cisco DNA Center, and DevNet form a truly seamless IoT experience that allows partners to materialize, and customers deploy any IoT envisioned solution through Cisco’s powerful yet simplistic wireless infrastructure. And that is something that anyone could have predicted!