Showing posts with label Mobility. Show all posts
Showing posts with label Mobility. Show all posts

Thursday, 29 February 2024

Evolution to 5G-Advanced and Beyond: A Blueprint for Mobile Transport

Evolution to 5G-Advanced and Beyond: A Blueprint for Mobile Transport

The rapid rollout of 5G technology has marked a historic milestone in the evolution of mobile connectivity. According to research firm Omdia, 5G subscriptions surged from 1.4 billion in the middle of 2023 to a projected 8 billion by 2028, representing a compound annual growth rate (CAGR) of roughly 40%. Despite this impressive uptake, Omdia’s data also reveals that overall mobile revenue is growing at a modest rate of about 2%, and average revenue per user (ARPU) is experiencing a decline.

Wireless trends and opportunities


Communication service providers (CSPs) are responding by scaling their 5G networks to accommodate the soaring bandwidth demands, foster revenue growth, reduce total cost of ownership (TCO), and enhance network efficiency and agility.

The industry has seen significant investments from CSPs, with tens of billions of dollars spent on 5G spectrum and more on radio access network (RAN) infrastructure to support 5G. CSPs’ current focus is monetizing 5G for both consumer and enterprise services (see Figure 1).

Evolution to 5G-Advanced and Beyond: A Blueprint for Mobile Transport
Figure 1. Opportunities and Trends

On the consumer front, fixed wireless access (FWA) has emerged as a leading 5G application. For instance, in 2022, FWA accounted for 90% of net broadband additions in the U.S., surpassing traditional cable and DSL. However, this shift brings its own complexities, including the need for enhanced xHaul transport bandwidth, increased data center resources, and greater demand for spectrum resources.

For businesses, private wireless networks represent a crucial area of growth. These networks are particularly relevant in the manufacturing, transportation, logistics, energy, and mining sectors. The advent of 5G-Advanced technologies could help expand these opportunities further. Network slicing, introduced by the 3rd Generation Partnership Project (3GPP), will be pivotal in deploying private 5G networks and other differentiated services.

Partnerships are becoming increasingly important in network monetization strategies, especially with hyperscalers. Additionally, collaborations with satellite operators are gaining traction due to investment and dramatically reduced launch costs, enabling the deployment of low Earth orbit (LEO) constellations and satellite transition from proprietary silo towards integration with terrestrial and 5G networks. Driven by the need for comprehensive reachability and the development of standardized connectivity, as outlined in 3GPP Release 17, this collaboration allows mobile and fixed operators to expand coverage to remote locations and for satellite operators to tap into new customer bases.

Operators are also focusing on technical advancements to monetize their 5G networks effectively. This includes transitioning from non-standalone (NSA) to standalone (SA) mobile cores, which is essential for enabling advanced 5G capabilities. 5G SA cores are required to launch many capabilities supporting ultra-reliable low latency communications (URLLC), massive machine-type communications (mMTC), and network slicing.

Preparations are underway for 5G-Advanced (3GPP Release 18), with features like non-terrestrial networks (NTN), extended reality (XR), and advanced MIMO. The investment will be fundamental for advancing to 6G.

Another critical development is RAN decomposition and virtualization, which involves breaking down the RAN into individual components and running functions on commercial off-the-shelf hardware. Benefits include better utilization, greater scalability and flexibility, and cost reductions. Implementing decomposition and virtualization using O-RAN promises these benefits while breaking RAN vendor lock-in due to standardized, open interfaces.

Edge infrastructure investment is increasing to support new enterprise applications, integral to 5G SA and 5G-Advanced, by moving processing closer to end users, thereby reducing latency, and serving as a critical driver for cloud-native technology adoption. This approach requires flexible deployment of network functions either on-premises or in the cloud, leading to a decentralization of network traffic that was once concentrated. This evolving trend has become more pronounced with increasing traffic demands, blending network roles and boundaries, and creating a versatile network “edge” within the CSP’s framework.

Operational savings, including cost reduction and sustainability initiatives, are top priorities for CSPs to meet budgetary and carbon footprint goals.

Preparing your mobile transport for 5G Advanced and beyond


Mobile packet transport is critical in these initiatives and network transformation, leading to rapid changes in CSP transport networks. Traditionally, these networks relied on dedicated circuits and data communication appliances. However, modern transport is shifting toward a logical construct using any accessible hardware and connectivity services. Successful network architecture now hinges on the ability to seamlessly integrate a variety of appliances, circuits, and underlying networks into a unified, feature-rich transport network.

The Cisco converged, cloud-ready transport network architecture is a comprehensive solution designed to meet the evolving demands of 5G-Advanced and beyond. The architecture is particularly important for operators to navigate the complexities of 5G deployment, including the need for greater flexibility, scalability, and efficiency. Here’s a detailed look at its essential components:

  • Converged infrastructure: Cisco’s approach involves a unified infrastructure seamlessly integrating various network services across wireline and wireless domains. This convergence is essential for supporting diverse customer types and services, from consumer-focused mobile broadband to enterprise-level solutions. The infrastructure is designed to handle all kinds of access technologies on a single network platform, including 4G, 5G, FWA, and the emerging direct satellite-to-device connectivity outlined in 3GPP’s NTN standards.
  • Programmable transport and network slicing services: At the heart of Cisco’s architecture are advanced transport technologies like Border Gateway Protocol (BGP)-based VPNs and segment routing (SR), crucial for a unified, packet-switched 5G transport. These technologies enable a flexible services layer and an efficient underlay infrastructure. This layering provides essential network services like quality of service (QoS), fast route convergence, and traffic-engineered forwarding. Network slicing is also a key feature, allowing operators to offer customized, intent-based services to different user segments. This capability is vital for monetizing 5G by enabling diverse and innovative use cases.
  • Cloud-ready infrastructure: Recognizing the shift toward cloud-native applications and services, Cisco’s architecture is designed to support a variety of cloud deployments, including public, private, and hybrid models. This flexibility ensures that the transport network can adapt to different cloud environments, whether workloads are on-premises or colocated. Virtual routers in the public cloud play a significant role here, providing required IP networking functions (including BGP-VPN, SR, and QoS).
  • Secure and simplified operations model: Security and operational simplicity with service assurance are essential components in Cisco’s architecture. The network is designed for easy programmability and automation, which is essential for operational efficiency and cost reductions. This includes extensive telemetry and open APIs for easy integration with orchestration tools and controllers. Additionally, AI and machine learning technologies can potentially be used for real-time network visibility and actionable insights for optimizing user experience across both wireline and wireless networks.

The architecture is about current 5G capabilities and future readiness. Preparations for 5G-Advanced and the eventual transition to 6G are integral. The architecture’s design ensures operators can evolve their networks without major overhauls, thereby protecting their investment.

Cisco’s converged, cloud-ready transport network architecture offers a blend of technological innovation, operational efficiency, and flexibility, enabling operators to navigate the challenges of 5G deployment while preparing for the subsequent phases of network evolution.

Source: cisco.com

Saturday, 25 April 2020

Cisco Helps Competitive Carriers Deliver 5G Service Agility

Cisco Prep, Cisco Tutorial and Material, Cisco Certifications, Cisco 5G

5G promises revolutionary new consumer experiences and lucrative new business-to-business (B2B) services that were never possible before: wireless SD-WANs, private 5G networks, new edge computing cases, and many others. Actually delivering these groundbreaking services, however, will require much more than just new 5G radio technology at cell sites. It will take very different capabilities, and a different kind of network, then most service providers have in place today.

Ultimately, you need a “service-centric” network—one that provides the flexibility and control to build differentiated services, rapidly deliver them to customers, and manage them end-to-end—across both wireless and wireline domains. What does a service-centric network look like? And what’s the best way to get there from where you are today? Let’s take a closer look.

Building a Service-Centric Network


Viewing the media coverage around 5G, you might think the revolution begins and ends with updating the radio access network (RAN). But that’s just one piece of the puzzle. Next-generation services will take advantage of the improved bandwidth and density of 5G technology, but it’s not new radios, or even 5G packet cores, that make them possible. Rather, they’re enabled by the ability to create custom virtual networks tuned to the needs of the services running across them. That’s what a service-centric network is all about.

When you can tailor traffic handling end-to-end on a per-flow basis, you can deliver all manner of differentiated services over the same infrastructure. And, when you have the end-to-end automation that service-centric networks imply, you can do it much more efficiently. Those capabilities go much deeper than the radios at your cell sites. Sure, adding 5G radios will improve last-mile speeds for your customers. But if you’re not evolving your end-to-end infrastructure towards service-centric principles, you won’t be able to deliver net-new services—or tap new B2B revenue streams.

Today, Cisco is helping operators of all sizes navigate this journey. We’re providing essential 5G technologies to help service providers like T-Mobile transform their networks and services. (In fact, Cisco is providing the foundational technology for T-Mobile’s non-standalone and standalone 5G architecture strategy.) At the same time, we’re building on our legacy as the leader in IP networking to unlock new transport, traffic handling, and automation capabilities. At the highest level, this evolution entails:

1. Implementing next-generation IP-based traffic handling

2. Extending IP all the way to endpoints

3. Laying the foundation for end-to-end automation

Optimizing Traffic Management


As the first step in building a service-centric network, you should be looking to further the migration of all network connections to IP and, eventually, IPv6. This is critical because IP networks, combined with technologies such as MPLS, enable multi-service networks with differentiated traffic policies. Without advanced traffic management, you can’t provision, monitor, and assure next-generation services under service-level agreements (SLAs), which means you can’t tap into lucrative consumer and business service revenue opportunities.

Today, most operators manage traffic via MPLS. Although MPLS has been highly effective at enabling traffic differentiation, it has complexity issues that can impede the scale and automation of tomorrow’s networks. Fortunately, there’s another option: segment routing. Segment routing offers a much simpler way to control traffic handling and policy on IP networks. And, by allowing you to programmatically define the paths individual services take through the network, it enables much more efficient transport.

Many operators have deployed segment routing and are evolving their networks today. You can start now even in “brownfield” environments. Cisco is helping operators implement SR-MPLS in a way that coexists with current architectures, and even interoperates with standards-based legacy solutions from other vendors. Once that foundation is in place, it becomes much easier to migrate to full IPv6-based segment routing (SRv6) in the future.

Extending IP


As you are implementing segment routing, you should go one step further and extend these new service differentiation capabilities as close to the customer as possible. This is a natural progression of what operators have been doing for years: shifting almost all traffic to IP to deliver it more effectively.

Using segment routing in your backhaul rather than Layer-2 forwarding allows you to use uniform traffic management everywhere. Otherwise, you would have to do a policy translation every time a service touches the network. Now, everything uses segment routing end to end, instead of requiring different management approaches for different domains. You can uniformly differentiate traffic based on needs, applications, even security, and directly implement customer SLAs into network policy. All of a sudden, the effort required to manage services and integrate the RAN with the MPLS core is much simpler.

The other big benefit of moving away from Layer-2 forwarding: a huge RAN capacity boost. Layer-2 architectures must be loop-free, which means half the paths coming off a radio node—half your potential capacity—are always blocked. With segment routing, you can use all paths and immediately double your RAN bandwidth.

Building Automation


As you progress in building out your service-centric network, you’re going to be delivering many more services. And you’ll need to manage more diverse traffic flows with improved scale, speed, and efficiency. You can’t do that if you’re still relying on slow, error-prone manual processes to manage and assure services. You’ll need to automate.

Cisco is helping service providers of all sizes lay the foundation for end-to-end automation in existing multivendor networks. That doesn’t have to mean a massive technology overhaul either, with a massive price tag to go with it. You can take pragmatic steps towards automation that deliver immediate benefits while laying the groundwork for much simpler, faster, more cost-effective models in the future.

Get the Value You Expect from 5G Investments


The story around 5G isn’t fiction. This really is a profound industry change. It really will transform the services and revenue models you can bring to the market. But some things are just as true as they always were: You don’t generate revenues from new radio capabilities, you generate them from the services you can deliver across IP transport.

What’s new is your ability to use next-generation traffic handling to create services that are truly differentiated. That’s what the world’s largest service providers are building right now, and it’s where the rest of the industry needs to go if they want to compete and thrive.

Let Cisco help you build a service-centric network to capitalize on the 5G revolution and radically improve the efficiency, scalability, and total cost of ownership of your network.

Wednesday, 15 April 2020

Creating Possibilities with Cisco DNA Spaces and IBM TRIRIGA Building Insights

Cisco DNA, Cisco Tutorial and Material, Cisco Learning, Cisco Certification, Cisco Prep

During unprecedented periods of disruption, employee well-being and facility utilization will become top priorities for businesses of various sizes. Given tighter budgets and continued uncertainty, corporate real estate and facilities planning teams will have to determine the most effective and efficient use of their workspaces. To do this, these teams will need space utilization insights, so they can quickly identify changes in their workspaces and make data-driven decisions.

Understanding workspace utilization requires accurate occupancy data across all enterprise spaces, and gathering this data often leads to many challenges that include:

◉ Purchasing, deploying, and supporting new technology architectures

◉ Integrating disparate data sources into a common data lake

◉ Translating large amounts of data into meaningful and actionable insights

Because generating accurate occupancy data through sensors and other technology can be very challenging, space allocation and build/lease decisions are commonly based on manual efforts, historical patterns, and anecdotal evidence.

Given these challenges, how should an enterprise use technology to learn more about their space, both to create an engaging workplace and increase productivity?

Enter Cisco DNA Spaces and IBM TRIRIGA Building Insights, two leaders in their respective markets, partnering to deliver predictive insights and high-value outcomes at scale and through the Cisco Wireless network and software. “Understanding who is using your space and when they’re using it has never been more critical,” said Kendra DeKeyel, Director, IBM TRIRIGA Offering Management. “Our new partnership with Cisco gives clients an easy way to capture that crucial occupancy information in real time, with their existing Wi-Fi network. TRIRIGA Buildings Insights then delivers AI insights from this occupancy data, helping businesses make better-informed space management decisions, and respond quickly to changing demands.”

How to Easily Unlock Occupancy Insights


By leveraging existing Cisco Wi-Fi network infrastructure and wireless access points, Cisco DNA Spaces aggregates location data to provide location data for IBM TRIRIGA Building Insights. There are several ways this can benefit corporate real estate teams, facilities planning managers, and IT Professionals.

By using the wireless network, real estate and facility planning teams can gain historic and real-time visibility into how occupants use the workspace. These teams can realize significant cost savings by re-purposing or scaling back underutilized space. This is done through Cisco DNA Spaces cloud. It normalizes network data to determine occupants, and then delivers this data to IBM TRIRIGA Building Insights.

Planning teams can also understand how different departments use workspaces through the IBM TRIRIGA Building Insights partnership.  By understanding which departments use which spaces, planning teams can ensure that the workspace is optimized for the types of employees who spend the most time there.

For IT teams with existing Cisco Wireless infrastructure, they can deploy this solution without having to provision or upgrade new hardware or onboard new vendors. The Cisco DNA Spaces App Center makes the integration with IBM TRIRIGA Building Insights simple and secure.

Make every space count


With Cisco DNA Spaces and IBM TRIRIGA Building Insights, facilities planning managers can make informed business decisions about whether to expand their buildings, or even scale back on their facilities to save costs. As more data is generated, they can get smart, AI-driven recommendations on build/lease decisions as well. With accurate, real-time occupancy insights, facilities planning managers can ensure that their real estate portfolios are right sized. Most importantly, they have the resources to make the most out of every square foot.

Saturday, 19 October 2019

Introducing the Cisco Intersight Mobile App for Data Center Visibility on the Go

Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

With the tremendous customer adoption of Cisco Intersight, Cisco has now extended the reach of its Management-as-a-Service (MaaS) platform with the introduction of the Cisco Intersight Mobile App. The Intersight Mobile App provides a new intuitive view of Intersight managed systems, allowing users to keep an eye on what’s going on in their data center no matter where they are or what device they use.

Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam
The iOS version of the app is available now in the Apple App Store and the Android version will be available in the Google Play Store soon.


Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online ExamCisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

The new app provides on-the-go Health and Inventory detail for your Intersight-managed UCS and Hyperflex environment, so if a managed system’s health degrades to a point where an alarm is generated, the app will display relevant alarm detail. In addition, a comprehensive status of any Intersight-driven request can be monitored via the “Requests” dashboard.   Below we’re going to walk you through a series of screenshots with a few examples in the new app, so you see first-hand how easy it is to monitor your data center while you’re not in the office

How does it work?


Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

The Intersight OpenAPI provides a REST-based, programmatic interface for accessing the Intersight Management Information Model that is representative of your compute environment. The App solicits this model through the API and returns a rich set of status-related details for UCS Servers, HyperFlex Clusters, and Fabric Interconnects. These details are then displayed in an easy to understand format within the App.

A quick peek at the appropriate dashboard can reveal Server, HyperFlex Cluster, or Fabric Interconnect views for your environment. These dashboards provide high-level roll-ups showing health, inventory, model, and alarm summaries.

How are my servers doing?


Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online ExamCisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

This dashboard is showing that there are 54 healthy systems on the Server Dashboard, with one showing up as critical. To investigate, simply select the red “Critical” hot link. Seeing that it’s C220, you can then select that server.

Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online ExamCisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

In this scenario, the app is showing an alarm indicating a problem with fan 1 in server 1. The user can then take this information, turn on the locator from the app and have one of the operators go and assess the situation.

HyperFlex Storage Capacity on the Go


Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

Taking a closer look at the HyperFlex Dashboard and the HyperFlex “Top 5 Storage Utilization” summary on the bottom of the screen, it appears HX-SJC-01 has a capacity warning. Digging deeper into the HyperFlex Cluster Details for HX-SJC-01, it appears 61.8% of 110.6 TB is in use. This information tells the app user that they’ll need to keep an eye on the situation.

Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online ExamCisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

The Intersight App can also be used to monitor the progress of requests initiated through Intersight. For instance, if someone kicked off an OS installation on one of their C240 servers the previous day, they can see if – and how – that finished up. In the screenshot below it appears that the task is complete, and only took 38 minutes.

Cisco Certifications, Cisco Learning, Cisco Study Materials, Cisco Tutorial and Material, Cisco Guides, Cisco Online Exam

Here is a complete list of my current alarms.  There are several issues being flagged with varying levels of severity.  The alarms provide a level of visibility that enables IT teams to prioritize and be proactive in managing their infrastructure.

This is just the beginning for Intersight’s Mobile App. With this introductory version of the mobile app, users get:

◈ On-the-go health and inventory detail
◈ HyperFlex capacity detail
◈ Status and monitoring of Intersight-driven requests

Thursday, 5 September 2019

Mobile Operators and 5G: Evolving into Digital Service Providers

5G is a revolutionary technology that’s expected to enable Industrial Digitization. It envisions a digital network that enables society to become mobile and connected, while driving value creation in sustainable business models. 5G implementation will have an impact in social and business developments some of them would be as:

◈ High-capacity or high-performance outdoor and indoor broadband access in high density spaces
◈ Increased user mobility
◈ Proliferation of Internet of Things (IoT) devices
◈ Extreme real-time communication
◈ Ultra-reliable and lifeline communications

With 5G technology powering the next wave of business ecosystems and capabilities, a new and diverse revenue mix will be created for mobile operators who can turn their mobile networks into platforms for deeper interaction with content and services. This transformation to digital service providers will facilitate the creation of new disruptive business models coupled with lean operational efficiency. While this evolution has the potential to drive revenue streams for service providers into enterprises and vertical solutions, it is a significant business and technology transformation that must be visualized in an end-to-end fashion. The technology transformation is underpinned by the Network as a Service (NaaS) model, which creates a slice in the network to carry various types of traffic and service SLAs over a single network.

The Business Proposition for 5G


Cisco Tutorials and Materials, Cisco Learning, Cisco Online Exam, Cisco Certifications

The new network infrastructure will address exponential bandwidth demands, massive logic scale, and the rise in low-latency requirements from new applications and services in an efficient, automated, and programmable manner using a flexible and agile network fabric.

Operators can grow Enterprise revenue streams through use cases like Fixed Wireless Access (FWA) and create varied business models as 5G enables IoT, machine-to-machine communication at scale, and low latency services, also known as ultra-reliable low-latency communication (URLLC).

The adoption of technology advancements in the radio domain also offers the potential for operators to accelerate the implementation and monetization of massive multiple-input and multiple-output (MIMO) technology. MIMO allows the dynamic transmission of data as highly focused beams to send and receive multiple data signals simultaneously over the same radio channel, with multiple users using the same time and frequency resources through millimeter wavelengths and small cells.

Bringing possibilities to life using Network as a Service (NaaS)


For operators to provide the use cases detailed above, the network must be used as a Service. There will be a need for a flexible, dynamic network configuration based on user-specific service requirements, as opposed to a one-size-fits-all architecture. To achieve the Network as a Service approach, network slicing – a critical service feature, is introduced in 5G technology. This feature, coupled with a slice orchestration engine, working in tandem and across various domains, as well as software-defined networking (SDN) controllers, allow operators to offer the NaaS solution to their enterprise customers.

Network slicing allows multiple logical networks to be run as virtually independent business operations on a common physical infrastructure. Network slicing provides a network with user-specific functionality without losing the economies of scale of a common infrastructure. Network slicing will be an end-to-end solution approach, traversing across the different layers of the packet network from access to core. For implementation, Network slicing will require platforms to be much more programmable, intelligent, and flexible in order to cope with heterogenous environments and requirements.

Cisco Tutorials and Materials, Cisco Learning, Cisco Online Exam, Cisco Certifications

The new services enabled by 5G will require that separate slices can be provisioned for different services based on the operator’s requirements, as well as those of the enterprise customer. Network slicing can be a combination of hard and soft slicing; hard slicing comprises the creation of separate planes or topologies with dedicated links, while soft slicing is a logical isolation and traffic classification using VPN and quality of service (QoS).

Cisco Tutorials and Materials, Cisco Learning, Cisco Online Exam, Cisco Certifications

In the 5G era, a single network infrastructure can meet diversified service requirements. A 5G E2E network architecture is envisaged to have the following attributes: Provides logically independent hard and soft network slicing on a single network fabric to meet diversified service requirements and provides Telco Cloud consisting of DC SDN fabric and virtualization stack, providing a platform to host 5G infrastructure services as well as business services. Radio disaggregation and virtualization will reconstruct radio access networks (RAN) to provide massive connections of multiple standards and implement the on-demand deployment of RAN functions required by 5G. This also simplifies the core network architecture to implement the on-demand configuration of network functions through control and user plane separation, on-demand distributed functions and workloads, and unified orchestration and management.

The key tenets of 5G network transformation


Traditionally, mobile operators have had network architectures that are complex, rigid, monolithic resulting in high operating costs. To be operationally efficient, agile and to deliver NaaS, Service Providers will have to transform to Network Cloud architectures for 5G. The key tenets of this transformation are as follows:

◈ Transport simplification 
     ◈ To reduce the number of devices from access to core, states and protocols on the IP transport layer with stringent timing considerations
◈ Network functions virtualization (NFV) 
     ◈ Benefits include virtualization, disaggregation, agility and the ability to drive Capex savings leveraging non-modified opensource technologies
◈ Distributed Edge Cloud 
     ◈ Hosting services at the network edge translates to bandwidth savings and a better user experience while reducing touchpoints for network operations and management if deployed correctly
◈ SDN and Orchestration 
      ◈ To build an automated network service and analytics framework visualized to a network management for reduced time to market and improve operational efficiency

Bringing it all together: Cisco 5G


Network as a Service is a key framework for operators to monetize 5G. Cisco’s approach is to build a programmable, packet-based network architecture with orchestration and closed-loop automation. This takes place across various domains of the 5G network like Transport networks, Central and Distributed Edge data centers to host cloud-native network functions in an agile manner. This approach empowers operators to transform holistically from the one-size-fits-all approach to a dynamic network slice architecture to capitalize on the opportunity 5G will bring.

Thursday, 6 June 2019

20 Years of Wireless with the Wi-Fi Alliance

In 1999, the idea of connecting to a network wirelessly was mostly a dream. The only device one might want to connect was a laptop, and they were generally expensive and often restricted to the executive suite in larger enterprises. But 1999 was also the year that the IEEE 802.11 Working Group approved the IEEE 802.11b standard, the technological base of Wi-Fi.

Cisco Wi-Fi Alliance, Cisco Certifications, Cisco Learning, Cisco Guides, Cisco Tutorials and Materials

However, the mere existence of a standard written by a bunch of smart engineers is rarely sufficient to ignite a revolution. Wireless technology needed a savvy champion, an industry organization to market the technology to the world and ensure it really works in the hands of users. Aironet (acquired by Cisco in 1999) was one of six companies to recognise this need and co-founded the Wireless Ethernet Compatibility Alliance (WECA), also in 1999.

The WECA took on two vital tasks immediately: to ensure the technology really worked in a multi-vendor environment, and to find a better name, one that would resonate around the world. It succeeded in both.

In 2000, WECA changed the name of its technology from Wireless Ethernet to Wi-Fi. Today, the Wi-Fi label is recognized across the globe and Wi-Fi is so valued that, according to at least one survey, people would rather give up beer or their morning coffee than their Wi-Fi.

Technical diligence


In 2000, the newly renamed Wi-Fi Alliance issued its first interoperability certification for an IEEE 802.11b product, operating at 11Mb/s. This certification was the first of over 45,000 product certifications over the next twenty years. As Wi-Fi technology has expanded, Wi-Fi Alliance certifications have kept users confident that their devices will work with products from other vendors. In 2019, users can be sure of interoperable, reliable and secure Wi-Fi access using the latest IEEE 802.11ax standard (now branded Wi-Fi 6) at rates of up to 5 Gb/s.

In the early years of the Wi-Fi Alliance, it was not always clear that Wi-Fi was going to become the dominant wireless access technology. It certainly was not pervasive. I recall IEEE 802.11 Working Group meetings in 2001, where most engineers designing standards for the next generation of Wi-Fi did not even have Wi-Fi access on their laptops; during Working Group meetings we often had to borrow Wi-Fi cards from a big box at the front of the room.

Today, the idea of a laptop not having perfectly-working Wi-Fi connectivity built-in is alien. Every laptop has Wi-Fi, as does just about any device that generates or uses data. Over 30 billion devices have been made with Wi-Fi, from security cameras in homes to badge readers in enterprises to entertainment systems in cars, industrial sensors, and, of course, mobile phones. There are so many devices using Wi-Fi that by 2022, Cisco’s Visual Networking Index forecasts more than half of all global IP traffic will access the network using Wi-Fi. Unfortunately, this traffic includes my Wi-Fi enabled bathroom scale, telling the cloud each morning that I really should do more exercise.

Challenges along the way


Wi-Fi is not perfect and never will be, but the Wi-Fi Alliance has provided a forum for ongoing development and improvement. For example, a flaw in Wi-Fi security was revealed in 2001 in the form of the WEP Debacle, in which it was shown WEP actually provided very poor security. It was almost a death sentence, because Wi-Fi without security is close to useless. Fortunately, the whole Wi-Fi ecosystem, led by the Wi-Fi Alliance, quickly pulled together and defined WPA (as a temporary solution) and then WPA2 (as a solution that has lasted more than 15 years) to ensure Wi-Fi had appropriate security to meet users’ needs. Of course, you can never take your eye off the ball with security. The Wi-Fi Alliance has continued to promote improvement, most recently with the release of WPA3 (with significant leadership from my Cisco colleague, Stephen Orr).

The Wi-Fi Alliance does not always get it right in its certification programs either, but every experience improves the process, and some “failures” hold the keys to future success. The Wi-Fi Direct certification for peer-to-peer communications was technically successful, in terms of the number of certifications, but the technology didn’t see widespread use. The Wi-Fi Alliance has not given up on peer-to-peer communications, though. Instead, it has learned from the experience;  there are great hopes that the recently introduced Wi-Fi Aware certification will better meet user’s needs.

The WiGig program for 60GHz access is another example where the Wi-Fi Alliance continues to persevere. This activity started in the Wi-Fi Alliance back in 2010. WiGig is still not yet successful, but it represents a significant opportunity for new spectrum and new use cases. The Wi-Fi Alliance’s ongoing work and perseverance means it is an opportunity that still has an excellent chance of being fulfilled in the near future.

Despite the Wi-Fi Alliance’s “learning experiences” over the years, the key point is that Wi-Fi has been successful because it has always fulfilled a promise to enable anyone, anytime, anyplace to construct a cost effective solution to solve real user’s problems. And the problems Wi-Fi solves are evolving. In 2000, the problem was connecting a laptop. Today, it is connecting anything to everything in homes, enterprises, factories, transport and public spaces.

The key to fulfilling this promise has been the Wi-Fi Alliance members’ cooperation across the Wi-Fi ecosystem. The Alliance is a forum for making sense of the alphabet soup of standards from the IEEE 802.11 Working Group, and for developing additional specifications as necessary. It’s also the primary forum for bringing vendors together to ensure interoperability of basic Wi-Fi technology as it continues to develop.

Proud to lend a hand


Cisco is proud to have played a role in the Wi-Fi Alliance since 1999. The company has been a driving force in the Wi-Fi Alliance from the very beginning, as a Sponsor member influencing its strategic direction and as a participant in Task Groups and Interoperability Test Beds. The Wi-Fi Alliance has a provided a basic interoperable Wi-Fi platform for Cisco to provide innovative features that meet the particular needs of our customers; features including Cisco Compatible eXtensions (CCX), controllers with coordinated Access Points, Cisco CleanAir® interference detection and mitigation, location based solutions such as Cisco DNA Spaces, Application Visibility & Control, Hyperlocation, Flexible Radio Assignment (FRA) of dual 5 GHz radios, Software Defined Access, and Intelligent Capture and real-time telemetry. In many cases, Cisco has contributed our proven features back into the Wi-Fi ecosystem, ultimately with certification by the Wi-Fi Alliance.

After twenty years, the global economic value of Wi-Fi is almost $2 trillion per annum (as of 2018). However, it is not the only globally-used wireless data network. Many claim that cellular data, in particular 5G, will take over from Wi-Fi in several key market segments. But Cisco don’t see this as a game with only one winner.

Cisco project that both Wi-Fi and 5G will succeed, and in fact strengthen each other’s success. Wi-Fi will continue to grow to meet the needs of the local area (in unlicensed spectrum), and 5G will meet the needs of outdoor, high speed needs (mostly in licensed spectrum). They will be better together – especially if users can move between the systems smoothly.

To help bring that vision to life, Cisco recently introduced OpenRoaming, building on the Wi-Fi Alliance’s Passpoint certification, which will allow users easy and secure access to Wi-Fi networks globally via a cloud-based federation of access networks and identity providers – including mobile carriers.

I am proud to have been personally involved with the Wi-Fi Alliance since 2003, most of that time on the Board of Directors, including as Chair of the Board from 2006 to 2011. I participated in its 10 year and 15 year anniversary celebrations, and now its 20 year anniversary. I look forward to watching Wi-Fi continue grow and develop in the future under the guidance of the Wi-Fi Alliance.

Monday, 29 January 2018

Cisco Operational Insights: A New Way of Seeing Operations

Businesses thrive when they create value for their shareholder and stakeholders by maximizing revenues and minimizing costs. Technology, especially wireless and IoT, can be invaluable tools to achieve these goals. But, when it comes to operating costs, these IT pillars, while incredibly valuable, only address part of the challenge.

Friday, 1 December 2017

The Cisco ASR 9000 – Timeless Versatility for Future Growth

Cisco’s Aggregation Service Router 9000 (ASR 9k) has evolved into the cloud-scale, multi-service platform offering unprecedented flexibility, scale, programmability and security for Service Providers today.

When the ASR 9k was first announced in November 2008, it was a 6-slot and a 10-slot chassis—each of them capable of handling 3.2Tbps and 6.4Tbps of traffic, respectively.

Wednesday, 6 September 2017

Operators Can Bridge the Gap for New IoT Revenues

The market for Low Power Wide Area (LPWA) networks, particularly NB-IoT and CAT-M1, is heating up. More and more Mobile Network Operators are engaged in trials or have already launched commercial services. Manufacturers are adding NB-IoT and CAT-M1 support to their sensors, modules, and devices. To date, Operators have taken a “horses for courses” approach by deploying a range of LPWA network standards for varying IoT application needs. However, many are predicting that the market momentum will swing from the first-to-market unlicensed LPWA standards (e.g., LoRa, Sigfox) to the emerging licensed LPWA standards (e.g., NB-IoT, CAT-M1), which are forecasted to capture over two-thirds of the LPWA market by 2020, according to ABI Research.

Tuesday, 29 August 2017

Stay Connected Wherever You Go with MTX Connect

So how many of you go on a business trip to another country only to find upon your return the shock of a lifetime, your phone bill? I know that I have and instead of the promises of lower prices from the big operators, you get hit with roaming surcharges and the like? C’mon you know that you have.

Friday, 25 August 2017

Network Slicing in Action

One particular aspect of mobile network evolution that deserves attention is the idea of reducing round-trip time (RTT) between consumers of a service and the service source itself. So much so that in 5G, this concept has acquired its own unique 3GPP term: URLLC which is an acronym for Ultra-Reliable Low Latency Communications. Cisco envisions, as does AT&T among other leading carriers that low latency communications will enable a new class of network services characterized by tight control loops involving Augmented Reality (AR), Virtual reality (VR) and even haptic communications triggered by the immediate network response to a touch event. Cisco is excited about these possibilities and is pursuing an aggressive mobile network evolution strategy designed to deliver an end-to-end system architecture enabling low latency capabilities. But amidst all of this, it is probably worth unpacking the basics so that we can develop an understanding of what is truly needed and how we can help carriers realize the end-game.

Wednesday, 23 August 2017

Introducing New Enterprise Controls for Cisco Spark

Making the Impossible, Possible


Last year, one of my colleagues went to a start-up conference with 2,000 people. On stage, someone asked the audience how many were working on consumer apps. Almost everyone raised their hands. Then the person asked how many were working on enterprise apps. This time only three hands went up. Three.

Sunday, 20 August 2017

Service Provider Security Architecture – Part 2

In my earlier blog post, I described the need for pervasive security and architectural approaches to enable secure, agile services against increasingly sophisticated attackers. Pervasive security is critical to the Open Network Architecture (ONA).

Friday, 18 August 2017

Digital Transformation Taking Flight in ASEAN Region

We showcased our innovation at CommunicAsia in Singapore a week ago, highlighting the changing digital landscape and sharing insights on how companies should be ready for the future.

Our senior executives were on hand to address topics and trends impacting organizations across the region, from strategies to migrate to 5G, the importance of IoT/M2M in this transition and learning how to orchestrate network services in the age of the cloud.

Friday, 11 August 2017

Cisco’s 3-Phase Plan for your 5G success

It is generally accepted that revenues for mobile service providers are trending flat to down. A recent ARPU report from Informa provides this picture in detail by country. Some mobile service providers have acquired content services as a way to boost this trend, but they admit that this too will eventually trend to flat again. What is needed is a new business model that goes beyond connectivity and bandwidth. There are a number of studies on digital transformation and 5G in particular that note the services for enterprise are strong growth opportunities between now the 2025 (and beyond). There is an in-depth 2016 report from the European Commission with a catchy title of “Identification and quantification of key socio-economic data to support strategic planning for the introduction of 5G in Europe” that projects a large growth in enterprise business for mobile service providers 5G network services between now and the 2025.

Sunday, 6 August 2017

Shifting Perceptions in Technology to Drive Change in Learning

The cloud and mobility in our devices have caused industries the world over to rethink how they conduct business. Education is no exception to this shift in culture. How does a public service industry tasked with the education of minors and often an extremely limited budget create access to the technological revolution for their students?

Addressing access requires a two-pronged approach of technical and cultural change. Both of these require a new mindset where we question our preconceived notions, adapt our perceptions, and reexamine our biases.

Saturday, 5 August 2017

School’s In: Flexible Radio Assignment

If you are in IT, you’re being asked to support more wireless devices – both end user and non-user – as well as the ever growing applications they use. These applications, such as video and collaboration, are far more bandwidth intensive and add large amounts of traffic to the network. This high-density environment could create a bottleneck on your network. Users may carry three or more devices and will come and go at various times, creating an unpredicted high density scenario your network may not be ready for.