Showing posts with label Wi-Fi. Show all posts
Showing posts with label Wi-Fi. Show all posts

Tuesday, 13 June 2023

Announcing Cisco ISE 3.3

Cisco ISE 3.3, Cisco Certification, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Tutorial and Materials, Cisco Prep, Cisco Tutorial and Materials

If you were at Cisco Live 2023 in Las Vegas, you surely saw that Cisco announced a lot of new products. One of these new products was the update to Cisco Identity Services Engine (ISE 3.3).

Every network admin or security operator has the same issue: you’re trying to enhance your network’s security, while adding visibility and boosting efficiency, all without sacrificing flexibility. In other words, you want more features without the complications. Cisco ISE 3.3 has that.

Split Upgrade and Multi-Factor Classification adds flexibility


When it comes to flexibility, Cisco ISE 3.3’s Split Upgrade feature will change the way you look at ISE upgrades. Customers can be hesitant to update to the newest version of Cisco ISE, because it can take a long time for ISE nodes with large databases to complete the upgrade. Split Upgrades is a new process that is less complex, as files are downloaded before upgrades and prechecks are done. Split Upgrade gives you better control on which ISE nodes to upgrade at any given time, without any downtime.

Cisco ISE 3.3, Cisco Certification, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Tutorial and Materials, Cisco Prep, Cisco Tutorial and Materials
Cisco Identity Services Engine (ISE) Dashboard

Another feature in Cisco ISE 3.3 provides a way to easily identify clusters of unidentified endpoints found on the network. These endpoints are unidentified because oftentimes a variety of endpoints connect to the network that are not directly provisioned by IT. This feature uses AI/ML Profiling and multi-factor classification (MFC) to quickly identify clusters of identical unknown endpoints via a cloud-based ML engine. From there, the devices can be reviewed by proposed profiling policies via the ML engine and have the devices labeled as either MFC Hardware Manufacturer, MFC Hardware Model, MFC Operating System and MFC Endpoint Type.

By placing the unidentified device into one of these four buckets, Cisco ISE has taken a big chunk of guessing what goes where out of the equation. From there it’s easier for the customer to determine what the endpoints are and what policies should govern them when on the network.

Unique to Cisco: Wi-Fi Edge Analytics


A Cisco-only feature called Wi-Fi Edge Analytics will allow network admins to mine data from Apple, Intel and Samsung devices to better improve profiling. Cisco Catalyst 9800 wireless controllers will pass along endpoint-specific attributes, such as model, OS version, firmware, among others, to ISE via RADIUS. From there this information will be used to profile common endpoints found on the network. Network Admins will now have more data allowing them to create more defined profiles. The more information that is at the fingertips of the admin, the more precise the profile.

Even More Flexibility with Controlled Application Restart


To increase efficiency, predictability and reduce downtime, Cisco ISE 3.3 offers Controlled Application Restart. It benefits customers by saving them time and eliminating a lot of the headaches that come with managing ISE admin certificates. Customers are now given the ability to control the replacement of the ISE administrative certificate allowing them the ability to plan for maintenance once their current certificate expires. Prior to this new feature, a certification replacement required a complete reboot of all the PSNs in the deployment without the ability to know or control the order to the reboot, which can cause some admins to allow the certification to lapse.

Changes to certificates require a restart since it affects systemwide configuration and cannot be done during operational hours since it requires significant downtime. However, Cisco ISE 3.3 now provides flexibility for these certifications to be scheduled the restart at the network admins’ convenience; during the middle of the night or on weekend when network usage is low. This eliminates the need for that downtime and helps to smooth security updates without disruption.

Controlled Application Restart is a response to an industry trend where customers are moving to a short-term certificate due to added security. This new feature is beneficial as the maintenance needed to update the certification—which can take upwards of 30 minutes per certificate—can be scheduled for the middle of the night, when network use is low, saving both time and resources.

Improved Insights with pxGrid Direct Visibility


pxGrid Direct Visibility has improved visibility from the last iteration of Cisco ISE (ISE 3.2) and now customers get improved endpoint attributes via external databases such as Service Now. These attributes can now be shown in Context Visibility. Whether the data comes from endpoints, users, devices or which apps are running over the network and its different attributes, it provides a lot of information such as the device type, device owner and other things like whether the device is operational.

Getting this endpoint data in an easily accessible fashion allows you to make better network decisions based on facts. This data can then be spun to run the network in a more efficient manner allowing for a safer network and less time spent on translating information.

Tougher Security with the TPM Chip


The new TPM Chip (for supported hardware) is a response to the need for increased security. Found on the new SNS-3700 models and in some virtual environments (in a form of Virtual TPM), the TPM chip is a dedicated chip where sensitive information can be stored. Previously if Cisco ISE used a password to connect to a database, it was stored in the file system, which is less secure. But now with the information housed on the physical TPM Chip, and with the ability to create true random numbers for key generation, it has proven to be more difficult to access thus providing a more secure place for information to be stored.

With the number of new features and functionality that comes to you with the latest Cisco ISE 3.3 update, your network’s security will be enhanced, and you will notice an increase in efficiency and visibility.

Cisco ISE 3.0 Overview Demo

Source: cisco.com

Friday, 7 April 2023

Deploying the Wi-Fi Network at Cisco Live EMEA 2023

Cisco Networking, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Tutorial and Materials, Cisco Wi-Fi, Cisco Live

It is now the fourth time in a row that I had the chance to be part of the Cisco NOC team for Cisco Live EMEA.

If we go even further back in time, I had the chance to go to Cisco Live for the Technical Design Clinics back in London and Berlin. The pressure was on the shoulders of the NOC team who had to deliver a working Wi-Fi network with so many random client devices connected. I did not envy their position (although I admired it). I particularly remember a bug from smartphone vendors in Cisco Live London that was repeating the event SSID as a personal hotspot, causing a lot of trouble to other client connectivity. This was the year the CiscoLive SSID went from fully open to a pre-shared key SSID to prevent that type of problem.

End of 2017, the NOC team invited me to be part of the Wireless Controller team for Cisco Live Barcelona 2018. I accepted quickly mostly for the sake of being part of the Cisco Live event, which I consider a privilege. I discovered since then how setting up a large events network is such a unique endeavor and will try to give some insights into certain choices and decisions.

The Planning


Around summer the year before the event, the first meetings start. We set up a team and make sure we have the best people for the job at every position. This is the responsibility of Remco Kamerman, the Cisco Live NOC team lead and pretty much the only fixed team member since he recruits the rest of us. Some people from the software engineering teams, some salespeople, and some CX people (TAC, Customer Success, and Professional Services): team members are not picked for their job role but for their expertise. If you are one of the top people in your technology, chances are that you already know a good part of the NOC team for having worked with them throughout the year since they are the top people too.

Mapping Madness

We receive the venue plans and event blueprints early on but they keep changing until the very last day (less and less as time goes by of course). This is the challenge of the design folks in the team (Professional Services and System Engineers mostly) who have to do a wireless design mostly by looking at regularly changing plans. A few site visits were organized to get a feeling of the venue. I was there on the first day the building team started building for the event and can testify that the number of physical changes the venue goes through in just a couple of days is unthinkable if you are not used to such events.

Maps are an important part of managing a wireless network. We could leverage the interoperability between the venue maps on the RAI Prime Infrastructure appliance, the Cisco DNA Center we used for the event, and the Ekahau design software we used for the design. Maps were cross-imported between those 3 places so that we could have the proper maps for design and day-to-day management.

Keynote Design

A specific challenge was the keynote area which consisted of 4500 chairs around a central stage in an empty hall. 50 9104 stadium antennas were used to provide coverage from the trusses. Mounting those APs/antennas required very close collaboration with the keynote area build team as there are specific moments where the truss is down and accessible and then brought up (after which you need a scissor lift to access it and you want to avoid that as much as possible for efficiency)

The Build Up


The majority of the NOC team consists of people actually physically building up the network. That requires deploying hundreds of switches throughout the venue and the cabling that goes with that without anything visible to the naked eye. It also requires deploying hundreds of wireless access points in various places. They can be on poles, walls, or ceilings, and mounting elegantly and efficiently becomes an art.

Cisco Networking, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Tutorial and Materials, Cisco Wi-Fi, Cisco Live
Figure 1: Mounting APs and antennas on the structure

Similar to the Fira Barcelona, we inherited around 400 Wi-Fi access points from the RAI Amsterdam venue. They were nice enough to let us control their access points for the duration of the event. This way, we don’t have to deal with two separate wireless networks. A good part of the venue APs were Cisco 9120s with directional antennas mounted on the very high ceiling (as well as some 9104s in one Hall) which are perfect for providing general coverage.

Indeed the RAI hosts a lot of different shows that have nothing in common (Cisco Live was between a horse show and a pregnancy-related show) and their Wi-Fi network needs to stay stable between events. However, since we are Cisco and we are willing to deploy a network just for our own event, we could add access points at the ground level and be better oriented for specific applications (in general, the close the AP is to the clients, the better, if you can afford it). We knew the high-density areas and more complicated ground areas where additional coverage would be welcome and that’s what our design consisted of.

Cisco Networking, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Tutorial and Materials, Cisco Wi-Fi, Cisco Live
Figure 2: 9104 stadium antennas mounted on a truss that will go up in the Keynote area

Event Wi-Fi Choices


Historically, the main SSID is WPA2 PSK SSID and the organization prints the key on the event badge everyone wears. We added EduRoam support for our education customers to have an SSID their device already knows and can connect to, using their education credentials. We also added OpenRoaming, where your device automatically connects to the Wi-Fi as soon as you enter the venue if you already had an OpenRoaming profile installed on your device. If you didn’t you can install one from the CiscoLive event app. Personally, I installed an OpenRoaming profile on my iPhone after my local supermarket created a profile for me from their app. My phone automatically connected, in a secure and transparent manner, to the venue as soon as I arrived with my profile from my local supermarket thanks to the RAI also having an OpenRoaming SSID even before Cisco arrived onsite.

We definitely wanted to keep the number of SSIDs offered as low as possible to avoid confusion and to keep the wifi network efficiency to the maximum possible, but the convenience (and the security!) of OpenRoaming and Eduroam convinced us to offer those as extra services.

Wi-Fi 6E

This year, we wanted to offer 6ghz Wi-Fi as 6E is the newest coolest thing. The difficulty is that providing this across the whole event would have meant purchasing hundreds of 9166 access points. This is not possible as we prioritize customer deliveries for the first time on a new device. It would also have meant replacing all the venue APs which is impractical for us. We then covered the entire Meeting Village hall with the 40 9166 we had. The challenge with this hybrid approach is that Wi-Fi 6E requires WPA3 and we did not want to make the main SSID WPA3 yet.

Even if the CiscoLive population is typically nerdy (it’s a compliment nowadays I think) and well equipped, you wouldn’t believe some of the older devices that connect to the network and WPA3 support is just not at 100% yet we believe. We had to create a separate WPA3 SSID which was broadcasted both in 5Ghz and 6Ghz (but 6ghz being only available in the Meeting Village) for compatibility reasons.

Legacy and “Bells and Whistles” SSIDs

As a general rule, is good practice to have some kind of legacy SSID and some kind of more performing SSIDs with more bells and whistles. Some years ago, it meant we provided a Cisco Live Legacy SSID which existed on 2.4ghz, while the 5Ghz was the main and “cool” SSID.

In Cisco Live 2023, we completely gave up on 2.4ghz and the CiscoLive SSID was only available on 5Ghz. This meant the main CiscoLive SSID needed to have the most compatible settings to ensure all the clients could connect and that meant giving up on some great Cisco features (like Device Analytics) for the sake of maximum compatibility. I predict that very soon, the WPA3/6Ghz SSID will become the main SSID and the 5Ghz-only/WPA2 SSID will be the legacy one. Maybe too early for that to happen next year but why not 2025?

How the Event Went


Keynote and 6ghz

The event went very well overall. During the keynote or the party, throughput tests returned surprisingly good results. The 9104 antennas were really surprised by their well-defined coverage area with very small leakage outside of the coverage direction. This really helps with channel reuse in a large venue hall.

It was a good surprise to see more than 60% of the Wireless clients using Wi-Fi 6. However, only a few dozen supported 6E. We expect a sharp increase by next year, but it will stay a minority of clients. There were a couple of 802.11n clients but really not many.

The top simultaneous client count was around 13 500. It is slightly lower than the last event in Barcelona. We expect the event to grow by next year since this was the first one post-Covid.

Cisco Networking, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Tutorial and Materials, Cisco Wi-Fi, Cisco Live
Figure 3: Our custom telemetry graph

Hardware and Software Considerations

It was the first Cisco Live we ran 100% on the Catalyst 9800 in EMEA and 100% on Cisco DNA Center. Indeed in 2020, they were there but we still had 8540 WLCs in the network. We ran the 17.9.2 CCO software and only had minor issues to report. As is becoming more and more commonplace, most of the time we spent troubleshooting was on interoperability issues with specific device types and features. Completely disabling 2.4Ghz was a great idea because we noticed an increased usage of Bluetooth among the attendees and the Wi-Fi network would have disturbed all those Bluetooth devices.

Not everything was perfect though, it can never be in such a large event with so many new technologies. But I’m glad we keep improving year after year. There are always areas of complaint when the client density is higher than what we anticipated: there were some very successful sessions in Devnet theater or World of Solutions and connectivity was subpar during those events. We’ll make sure to come up with an improvement plan for next year to make that better.

Source: cisco.com

Tuesday, 13 September 2022

Migrating to 6GHz

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News

With more than 18 billion devices in use and 4.2 billion more to be shipping in 2022, the sheer size of existing Wi-Fi deployments worldwide is just mind-boggling. In view of the new Wi-Fi 6E and 6GHz adoption push, it is critical to evaluate what are the best ways to do a migration from existing Cisco on-prem legacy networks into the new world of 6GHz deployments.

For Cisco Enterprise customers, there are several aspects that need to be evaluated for any successful migration planning:

  • Existing controller type:
    • is it AireOS?
    • Model? (Basically, can it  run 8.5 or 8.10?)
    • is it IRCM capable (2504/wism2 can’t do mobility to 9800)
  • Access point Inventory:
    • Are there any 802.11n models still in use? (per example, 2600, 3600, 1520, 1600, etc)
    • Are there any Wave1 APs? (last generation of IOS, per example 1700, 2700, 3700)
    • Mesh deployments?
  • PoE support:
    • What is the maximum supported power standard? (802.3bt, 802.3at, etc)
    • Any power budged constraints per port?
    • Or APs are powered by power injectors?
  • Current 5GHz TX power
    • Is my network running on average at power level 3-4?
    • or it is around 1-2?

6GHz adoption is only supported in the Catalyst 9800 IOS-XE controllers, running 17.7 or higher. This imposes some additional considerations either on controller type migration, or about legacy access points that may need to either be migrated, or supported through Inter Release Controller Mobility (IRCM) solutions

Legacy Access Points


Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 1. Legacy APs
Over the years, it has always been possible to do co-existence of previous generations of access points with the newly introduced models, ensuring both smooth network upgrades and capacity expansion. Adding new APs is normally not an issue until we hit the scenario of inter-generation gaps.

If a network that for any reason is still running devices 2 generations away (for example, a 2602 AP), and now needs to include new 802.11ax models (for example 9130) or jump to the  9136/9166/9164  for 6GHz support, this will need more complex migration paths.

When there are multiple generation gaps, if the legacy controllers can support IRCM to the IOS-XE 9800,  it is perfectly possible to design a migration plan, without the need to do a “forklift” installation.  This will ensure very little pain to users, and keep the network running until everything is migrated to the new hardware and standards

In the following table, we can see a summary of software support ranges and migration options for most access points models from 11n generation models:

Model/Series Last AireOS Support  IOS-XE support  IOS-XE AP equivalent  Migration Notes
700/700W Series  8.10  Not supported 9105  Migration through IRCM
1040  8.3  Not supported  9115   AP needs to be replaced 
1260  8.3  Not supported  9115   AP needs to be replaced 
1600  8.3  Not supported  9115   Either 8.5 IRCM, or Hardware replaced 
1700  8.10  17.3  9115   Migration through IRCM 
2700  8.10  17.3  9120 Migration through IRCM 
3700  8.10  17.3  9130  Migration through IRCM 
1810/1810W   8.10  Up to 17.3  9105  Hardware replaced or IRCM between IOS-XE versions
1830/1840/1850  8.10  Supported  9105  Directly supported
AP802/AP802H   8.5  Not Supported ISR10xx  Migration through IRCM 
2600  8.5  Not Supported  1920  Migration through IRCM 
2800/3800/4800 8.10 Supported   Directly supported 
1540 8.10 Supported   Directly supported 
1550 8.5 Not supported   Migration through IRCM 
1560 8.10 Supported   Directly supported 
1570 8.10 Up to 17.3   Migration through IRCM 

For a complete list, you can check the Cisco Wireless Solutions Software Compatibility Matrix, alternatively, you can run the Wireless Config Analyzer Express, to check your migration readiness

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 2. AP Migration Decision Flow

Legacy Controllers

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 3. Legacy Controller

Depending on the existing controller type, the migration may take different paths. Some scenarios will be simple, allowing a smooth transition. Others may need additional steps to successfully migrate into a Wi-Fi 6E network

What to expect:

◉ “Generation 1” controllers: 5508, 8510. They can support up to 8.5 AireOS version, which will allow mobility scenarios between them and new IOS-XE 9800 controllers (Inter-release Controller Mobility, IRCM support).  Also, they will support  both IOS and AP-COS access points, from 1700 to 3800 models (Wave1, Wave2 802.11ac )

◉ “Generation 2” controllers: 5520, 8540, 3504 . All of these can support up to 8.10 AireOS, also allowing IRCM scenarios with 9800. AP support will additionally include 802.11ax models, like the new Catalyst 9105, 9120, and 9130. etc.

◉ “Generation 1” controllers without IRCM: 2504, WiSM2, vWLC, 7510. No mobility is possible between them and IOS-XE, so additional steps with different migration scenarios are needed

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 4. Controller Migration Decision Flow

Migration Scenarios


In general, we should try to migrate “per RF blocks”, defining it as a roaming area or domain where clients can move normally between access points, before hitting idle timeout. Basically, move these RF blocks completely, into the new APs, and IOS-XE controllers. For example, either move a building or a complete floor into the new hardware and software.  We should avoid “salt & pepper” deployments, mixing APs on different controllers at the same time. Not because it is not supported, but because mobility will be more complex, and it may lead to issues sooner or later (just a problem prevention action)

For scenarios where it is impossible to break the RF environment into differentiated blocks (for example a very large building like an airport, or a fully open space office), we will have to either set up artificial boundaries based on roaming frequency and usage or do a forklift upgrade

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 5. Example of RF area/building migration

What happens if the AP model is not supported in any IRCM version?


This could be the scenario of a legacy controller, still working in 8.3, with some AP models that are not supported beyond that version. For example, the scenario of 20 APs of 2700 Series, and 10 APs of 1042 Series.

The 1040s are not supported in 8.5. In this case, the preferred option is to prioritize the replacement of those APs first, moving the impacted area into 9800 as the first step. Sometimes, customers have mixed models across a given building. For example, the mix of 2700 and 2600. In those scenarios, the best option is to consolidate models per supported version, moving all APs of a given type together, so they are contained in a specific RF space  in order to facilitate migration in blocks

Scenario 1: Legacy Controller supports IRCM

This will be the most common scenario, where we have either 8.5  (5508/8510) or 8.10 (5520/3504/8540) AireOS controller.  The migration picture will start with the creation of  IRCM setup between AireOS and 9800 controllers, then either replace APs in RF areas connecting them to the new controller, allowing mobility to act when a client needs to roam between legacy and new RF areas.

This method allows the smooth coexistence of both controllers, with RF areas migrated as needed, without any overnight switchover.

Things to keep in mind:

◉ If the controller is limited to 8.5 (5508, 8510), we will need a special IRCM version (8.5.182.104), to connect them to IOS-XE

◉ In general, it is best to split the RF network into different areas, configuring different RF group names between the legacy and IOS-XE controllers. This way each group can do the best calculations that their respective version allows. We should make sure that “Avoid Foreign AP Interference” is enabled on RRM/DCA configuration (it is by default)

◉ Always configure the primary/secondary controller name in access points. The new controllers will reject unsupported APs, but if any AP could work in both controller types, this will avoid APs joining the wrong one, or flip-flopping between them, until the migration is ready to proceed

Scenario 2: Legacy Controller not supporting IRCM

If the legacy network is running on a controller model WiSM2, 2504, 7510, vWLC, it is not possible to establish an IRCM connection between the old controller to the new 9800 handling the 6E APs. This limits significantly the options that are available, and it forces a more aggressive migration process

Migration alternatives:

◉ Keep the two networks separated, and migrate physical RF areas as new APs are added, replacing the old ones. No roaming is possible, and it is very important to keep client VLANs different between controllers, to avoid ARP proxy issues between both controllers. During this process, we must take care on preventing roaming events as client identity, address, etc, will be lost on the change between controller types.  For example, the ideal scenario is to move a complete building from one controller to the new one, doing a forklift AP replacement overnight.
◉ Avoid migrations “per floor”, as in most building types, it is normal to see clients roaming between APs on different floors
◉ Temporarily, replace the legacy controller with one that supports IRCM

Scenario 3: AP is supported up to 17.3 but not in later versions

This will happen when “Wave1” APs are still present, for example, 1700/2700/3700 AP models. For this type of migration, it is possible to move all APs into IOS-XE, with the 17.3 release, then add a secondary wlc to host the new Wi-Fi 6E APs, using 17.9, and establish an IRCM link between both controllers.

On this option, it is possible to do a graceful AP replacement from Wave1, into Wi-Fi 6E models, always trying to do the technology migration, per physical roaming RF area as described (per building, floor, etc). Once all APs are migrated, the 17.3 controllers can be decommissioned

In some instances, the customer may deploy a 9800-CL in 17.3 as a temporary controller to host the legacy APs

6GHz RF Coverage vs 5GHz. AP replacement scenarios


One common discussion point is: How different is going to be the cell coverage, in 6GHz, when compared to a 5GHz AP?

People will want to take a 5GHz AP and do a 1:1 replacement with a 6GHz supported AP, this may seem reasonable, but there are some aspects to consider:

◉ As WiFi-6E uses a higher frequency, the propagation characteristics are different, the signal drops slightly faster in 6 than in 5GHz. The difference should be around 2 dBm on measurements over the same distance. Material absorption will be different as well.

◉ 6GHz has different regulatory power constraints than 5GHz. Currently, most deployments will be using Low Power APs (for simplicity sake’s, let’s say 24dBm in FCC, 23 dBm in ETSI). This means that depending on the current network AP radio’s power levels,  using 6GHz may result in a slightly lower power output

Rule of thumb:

◉ If your power level average is around 3-4, it is possible to do a 1:1 AP replacement, and have a similar coverage level in 5 and 6 GHz
◉ If the power level is in 1-2, then you may need around 10 to 20% additional access points

The easiest way to know the average power level per site is to use WCAE tool and check the “Channel Stats 5GHz” tab. This will present a summary per channel, either at controller, or site tag level, of the average power levels (among other information).  For example, this is a network where migration to 6GHz may need additional access points:

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 6. Example of site with low 5GHz coverage

Versus this other one, where the deployment is running on low power, so fitting without issues into 6GHz requirements:

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 7. Example of site with good 5GHz coverage

If you use the latest version (0.9.11) of WCAE, you can also get a “6GHz predictive” view of how the power distribution, Nearby relationships, and RSSI for clients would look, if you replaced your current APs with 6GHz capable hardware. The tool will match ETSI or FCC regulatory requirements, adapting powers and differences as needed. This is useful to get a taste of how the network would look, doing a direct migration, without adding any APs.

Cisco, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Certification, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco News
Figure 8. 6GHz Predictive RRM modeling

For complex or demanding deployment scenarios, the recommendation will always be: do a site survey

Source: cisco.com

Thursday, 28 July 2022

Your Network, Your Way: A Journey to Full Cloud Management of Cisco Catalyst Products

At Cisco Live 2022 in Las Vegas, Nevada (June 12-16), there were many announcements about our newest innovations to power the new era of hybrid workspace, distributed network environments and the customers journey to the cloud. Among the revelations was our strategy to accelerate our customers transition to a cloud-managed networking experience.

Our customers asked, and we answered: Cisco announced that Catalyst customers can choose the operational model that best fits their needs: Cloud Management/Monitoring through the Meraki Dashboard or On-Prem/Public/Private Cloud with Cisco DNA Center.

Cisco Exam, Cisco Exam Prep, Cisco Certification, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Guides, Cisco News
Figure 1: Bringing together the best of both worlds

Note: This article heavily references the following terms:

DNA Mode and Meraki Mode for Catalyst: DNA Mode is a Catalyst device using a DNA license with DNA features and Meraki Mode is a Catalyst device using a Meraki license with Meraki features.

◉ Monitor and Manage: Cloud Monitoring allows Catalyst devices to have visibility and troubleshooting tools via the Meraki dashboard, while Cloud Management for Catalyst means complete feature parity with Meraki solutions.

So WHY THIS and WHY NOW?


Our Catalyst technology remains the most powerful campus and branch networking platform and fastest growing product on the market. Also, Meraki dashboard continues to be the simplest cloud management platform, with the highest adoption and deployment on the market. How can we bring things together and give our customers the best of both worlds? Enter Cloud Management and Monitoring for Catalyst. Simplicity without compromising.

And HOW to get started?


Today we have an on-premises management offering through Cisco DNA Center, which is a do-it-yourself high-touch approach. There are now two ways to implement this: in addition to existing Cisco DNA Center physical appliances that come in multiple sizes and flavors, we announced at Cisco Live the Cisco DNA Center Virtual Appliance, which runs as VMware ESXi instances in private data centers or as a virtual machine in public cloud platforms starting with AWS.

We also have Cisco Meraki Cloud Management which provides low touch, and simplicity as Meraki’s slogan’s: Simplicity at Meraki stands for everything from how we approach product development to user experience.

Executing a Cloud Ready Strategy


Cloud Management: Common Hardware Platforms

Cisco Exam, Cisco Exam Prep, Cisco Certification, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Guides, Cisco News
Figure 2: Delivering the Next Generation of Networking

On the wired network side, Cisco is focusing on our fixed switching portfolio in the Cisco Catalyst 9000 series switches. We announced that starting with the Cisco Catalyst 9300 series switches they will be common hardware and operate in either DNA or Meraki mode. A Cisco Catalyst 9300 switch can be migrated from DNA Mode to Meraki Mode and fully managed by the Meraki Dashboard. While the Meraki mode of the Catalyst 9300 can be migrated back to the DNA Mode, the Meraki MS390 cannot be migrated to a DNA mode of operation.

On the wireless network side, we also announced the first common hardware Access Points, the new Cisco Catalyst 916x Series Wi-Fi 6E Access Points. Those Access Points are built with dual modes: they are capable of booting in either Meraki or DNA modes. That means a Catalyst 916x Access Point can appear on the network as either a Meraki device or a Cisco DNA device, with all the associated monitoring and management capabilities inherent in each platform. The demo goes into detail.

Cloud Migration Details

◉ Cisco IOS-XE 17.8.1 version (or later) is required for the Cisco Catalyst 9300 switch to be migrated to Meraki Mode and managed by the Meraki Dashboard.

◉ The catalyst switch or access point when put in the Meraki mode of operations, their features align with what is available in the Meraki Dashboard. For example, the Cisco Catalyst 9300 switch in Meraki Mode is aligned with the switching features available for the Cisco Meraki MS390.

◉ You can migrate a standalone or a stack of Cisco Catalyst 9300 switches to Meraki Mode.

◉ Currently, you cannot stack the migrated Cisco Catalyst 9300 with Cisco Meraki MS390.

◉ Like native Meraki devices, once a Catalyst switch or AP is in Meraki Mode, the CLI access is 
unavailable.

◉ Managed devices display their software version as Meraki MS, just like native Meraki devices.

◉ Current supported switching platforms are Cisco Catalyst C9300-24T, C9300-48T, C9300-24P, C9300-48P, C9300-24U, C9300-48U, C9300-24UX, C9300-48UXM, C9300-48UN.

◉ Currently supported modules are C9300-NM-8X, C9300-NM-2Q, C3850-NM-4X.

◉ Current supported Cisco Catalyst Access Points are the Wi-Fi 6E CW APs (9162, 9164 and 9166).

Cisco Exam, Cisco Exam Prep, Cisco Certification, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Guides, Cisco News
Figure 3: The Migration Process from Cisco Catalyst 9300 DNA Mode to Meraki Mode

Cloud Monitoring: Existing Cisco Catalyst 9000 fixed switches 

Starting with IOS-XE 17.3.4, Cisco Catalyst 9200, 9300 and 9500 series switches in DNA mode with a valid DNA license (Essentials or Advantage) can be added to the Meraki dashboard for monitoring and troubleshooting, providing a single pane of glass and centralized network monitoring, network device visibility, usage, topology. The Meraki dashboard also allows the ability to see alerts, port information and use of diagnostic tools, all in one place.

Cisco Exam, Cisco Exam Prep, Cisco Certification, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Guides, Cisco News
Figure 4: Cloud Monitoring for Catalyst

Cloud Monitoring Details

◉ Catalyst Switches in DNA mode and with a valid DNA license (single or in a stack) can be monitored via the Meraki dashboard.

◉ Once claimed in the Meraki Dashboard, the switches will be automatically tagged with “Monitor Only” in the dashboard to distinguish from fully managed Meraki switches. Aside from this difference, “Monitor Only” Catalyst switches have visibility similarly to Meraki MS switches in the dashboard, including a visual representation of connected ports and traffic information.

◉ The Meraki Dashboard displays two serial numbers in the inventory of each catalyst device. Similar to migrated Catalyst switches, all switches in monitor mode keep a Catalyst Serial Number and generate a Meraki serial number which both appear in the dashboard to help identify switches.

◉ Monitor-only devices display their software version as IOS-XE. The device is still in DNA Mode which means that the CLI is still enabled, and other DNA features are available.

◉ For monitor-only devices, other management tools can still be used to make changes to devices such as Ansible, CLI, GUI, etc.

◉ Current supported switching platforms are Cisco Catalyst 9200, 9300 and 9500 series. Other platforms are under consideration.

◉ The process to onboard Cisco Catalyst switches for monitoring is done through a guided process using the Meraki onboarding app for Mac, Windows or Linux.

Cisco Exam, Cisco Exam Prep, Cisco Certification, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Guides, Cisco News
Figure 5. Cloud Monitoring Capabilities

License Flexibility


Our Licensing Team has been working hard to ensure a smooth transition between Modes (DNA and Meraki) from the licensing perspective.

For the common hardware perspective, to migrate the Cisco Catalyst 9300 switch to a Meraki mode, a valid DNA license is required. You can choose between Meraki Enterprise or Advanced license depending upon enabled features during license renewal.

The Cisco Catalyst 916x series APs can be purchased with the appropriate licenses based on the management platform: DNA license for Cisco DNA Center or Meraki license for Meraki mode.

On the visibility/monitoring front: A valid DNA Essentials (for switch visibility) or Advantage license (client visibility) is required to be onboarded into the Meraki dashboard. The device can be managed by other tools such as Cisco Prime, CLI or 3rd party tools.

Customer Use Cases


Cloud Monitoring

◉ Catalyst customers not using Cisco DNA Center as the operational platform: You will be able to gain immediate value with cloud monitoring, providing a view of your network from anywhere, anytime, giving them a low-effort way to experience Meraki Cloud Dashboard.
◉ Customers who are running a hybrid network of Meraki and Catalyst: Benefit by moving their Catalyst hardware into view on the Meraki dashboard with monitoring.

Cloud Management

◉ Customers with network refresh network: Customers who already have Meraki platforms; upon refresh, they can choose to adopt Catalyst into their existing infrastructure (APs and switches)

◉ Current Cisco Catalyst 9300 customers looking to move to cloud operations and the features available in the Meraki Dashboard satisfy their use cases.

Cisco DNA Center Physical/Virtual Appliance

◉ Customers using DNA features with Air gapped or Compliance requirements

◉ Customers using DNA features and require a Public or Private Cloud deployment

◉ Customers with requirements for on-premise management platform

Why this is important?


The benefits are endless

Customers now have the operational flexibility to choose either Meraki dashboard or Cisco DNA Center for the Cisco Catalyst family, providing extensive monitoring and management capabilities while enabling the choice as to where the services are running—on-premises or in the cloud—depending on operational needs, geography, and regional data regulations.

For example, financial organizations that require air-gap protection from internet traffic can utilize an on-premises Cisco DNA Center appliance while a distributed organization that needs to support high-speed Wi-Fi access at retail outlets, branch offices, or emergency popup sites, can deploy the new Cisco Catalyst Wi-Fi 6E Access Points and manage them from the cloud-first Meraki dashboard to simplify remote operations.

Source: cisco.com

Thursday, 12 May 2022

Latest Innovations in Cisco DNA Software for Wireless

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam

Cisco has continued to deliver on its promise of innovation in our Cisco DNA software for Wireless subscription. Networking demands are increasing and trends in technology are changing, like the need for a safe and productive hybrid work environment. By deploying the latest innovations in Cisco DNA Advantage software for Wireless along with Cisco DNA Center, you can provide your workforce with improved wireless stability, performance, and security. This leads to increased worker productivity, no matter where they are working from.

What’s new?

Wireless 3D Analyzer: Gain a completely new perspective of the typically invisible Wi-Fi radio frequency (RF). 2D maps that show AP placement on the floor and how RF is propagated from a top-down view no longer cut it because we live in a 3D world. As a network provider, in order to ensure that there is proper wireless coverage in every floor and building, you would need the ability to view wireless RF at different angles in order to discover and resolve RF coverage holes. The wireless 3D map solves these issues by creating an immersive experience that accurately replicates your floor map and all obstacles. This is an incredible addition to our monitoring and network deployment feature set.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 1: Wireless 3D Analyzer

AI-Enhanced RRM: Leverage artificial intelligence to optimize your wireless performance. Traditional radio resource management (RRM) does not consider trends in usage and critical work hours during the day. Radio optimizations are reacting to static threshold alarms as they occur. RRM doesn’t consider the dynamic properties of a wireless network – like the addition of cubicles, furniture, more devices, interference etc. AI Enhanced RRM evaluates two weeks worth of RF data with artificial intelligence to discover patterns and then proactively optimize your wireless before issues occur. This leads to stable wireless connectivity leading to consistent end user experience.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 2: AI-Enhanced RRM

AP Performance Advisories: As your wireless network grows to dozens or hundreds of access points,  underperforming access points can easily go unnoticed. AP Performance Advisories uses machine learning to measure and benchmark client experience parameters across all of your access points. It then flags any underperformers and lists them on the advisory dashboard. This helps identify and isolate poor-performing APs based on end-user experience and enables proactive AP performance optimization efforts to maintain client experience. You can monitor KPIs for these poor-performing APs and investigate further. You can get a view of the top 3 poor-performing APs in a screenshot helping to prioritize which ones to troubleshoot.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 3: AP Performance Advisories

Intelligent Capture: Resolve even the most difficult wireless issues with technical insight into metrics from both a client and access point perspective. It provides support for a direct communication link between Cisco DNA Center and access points, so each of the APs can communicate with Cisco DNA Center directly. Using this channel, Cisco DNA Center can receive packet capture (PCAP) data, AP and client statistics, and spectrum data, allowing you to access data from APs that is not available from wireless controllers.

Cisco DNA Software for Wireless, Cisco Learning, Cisco Career, Cisco Skills, Cisco Jobs, Cisco Learning, Cisco Preparation, Cisco Preparation Exam
Figure 4: Intelligent Capture

How can I get these features and more?


If you already have a Cisco DNA Advantage subscription in Wireless along with Cisco DNA Center, you will get to utilize these features at no additional cost to you.

If you do not have a Cisco DNA Advantage subscription or if you have a Cisco DNA Essentials subscription, the time to upgrade is now. We will continue to innovate and add more wireless features to our advantage tier.

Source: cisco.com

Tuesday, 8 March 2022

EIS in Transition: Impacts on Digital Transformation for Federal Networks

For Federal agencies, Enterprise Infrastructure Solutions (EIS) has provided a comprehensive, solution-based method to address their IT telecommunications and infrastructure needs. Over the years, EIS has seen many changes that directly impact stakeholders. But its primary purpose as a key driver for the digital transformation of enterprise telecommunications and networking solutions remains unchanged. Yet many agencies, such as Networx and WITs, face contract expirations on May 31, 2023. To maintain momentum for digitization, Federal agencies must begin the transition now by strategically mapping how and where it should start.

What’s next for Federal Digital Transformation?

For decades, Cisco has built a strong relationship with the U.S. Federal Government. Our portfolio of products, solutions, and services provide Federal agencies with the critical technology and support they need to enable the transformation of their networks within the EIS contract.

By leveraging these existing contracts, agencies are reducing costs and acquisition time. They’ve been able to digitize aging systems and catch-up to the private sector in capabilities. But now what? Which direction should Federal agencies go as they transition contracts within EIS? The simple answer: Cisco SD-WAN.

Beyond EIS with SD-WAN

Cisco SD-WAN is the premier choice for replacing expensive and aging legacy WAN. Federal agency networks leveraging Cisco’s SD-WAN solution can benefit from:

◉ Enhanced user experience

◉ Reduced costs

◉ Simplified operations

◉ Improved performance

◉ And robust security.

Cisco SD-WAN enables more efficient bandwidth allocation, powering critical applications to faster, smoother performance. This capability is now a necessity as Federal agencies move to cloud services and witness an explosion of app-wielding users connecting remotely.

Cisco Prep, Cisco Tutorial and Material, Cisco Career, Cisco Skills, Cisco Job, Cisco Preparation, Cisco Learning

Wi-Fi6 for the Federal Government


The transition in EIS contracts also provides Federal agencies with the opportunity to rethink their adoption of new and emerging technologies. One example is Wi-Fi 6. It builds on earlier Wi-Fi standards to provide Gigabit Ethernet Access – but with the reliability and predictability that comes from a licensed radio.

Cisco Wi-Fi 6 Solutions let users of modern, more agile networks benefit from new capabilities while connecting wirelessly. Cisco’s Wi-Fi 6 gives access points the power to support more clients in dense environments, plus it provides a better experience for users of typical wireless LAN networks.

Partnering for the future of EIS


In late 2021, the General Services Administration (GSA) issued a Request For Information (RFI) seeking comments to modify the EIS contract so that agencies can more quickly obtain mobility-as-a-service (MaaS) offerings (starting in late 2022). This expansion of EIS would allow for the use of 5G and bring the benefits of edge compute to the government workforce.

At Cisco, we’re also planning to provide additional capabilities to the U.S. Government, including 5GaaS capabilities. This could be a game-changer, enabling the U.S. Government to take advantage of mobility services.

Cisco Prep, Cisco Tutorial and Material, Cisco Career, Cisco Skills, Cisco Job, Cisco Preparation, Cisco Learning

For Federal agencies, the transition in EIS contracts provides a unique opportunity to leverage innovative technologies that can maximize network agility and security while enhancing workforce productivity.

At Cisco, we understand this and are helping shape the future of government with products, solutions, and services that empower agile networks, enhanced collaboration, and a holistic security approach. By preparing now, your agency can leverage the upcoming EIS transition to help shape that future.

Source: cisco.com

Tuesday, 21 December 2021

Wi-Fi 6E: Changing the game for Sports and Entertainment venues

Wi-Fi 6E, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Guides, Cisco Learning, Cisco Prep, Cisco

We hear a lot about how Wi-Fi 6E is going to change the way we work and play. With the ability to achieve higher throughput and lower latency due to more frequency availability and less congestion, combined with better security, Wi-Fi 6E has given us a new playbook of applications and use cases.

As a Distinguished Engineer in Cisco’s CX CTO organization, I spend a lot of time working within large public venues such as sports stadiums and music festival/concert venues to connect fans and create exceptional wireless experiences. I have the pleasure of working with professional sports leagues, Olympic Organizing Committee, U.S. Open, Live Nation, Clair Global and so many others to design, architect, and deliver networks capable of supporting the needs of tens of thousands of excited fans.  As an avid sports and music fan myself, it makes work fun!

Wi-Fi 6E connecting fans like never before

With the advent of Wi-Fi 6, we were able to make a huge difference in the efficiency and overall quality that Wi-Fi enabled venues provide to their guests. With the entry of Wi-Fi 6E, we take advantage of the same technologies and protocols but add the new 6 GHz band. This brings in stronger encryption (mandatory WPA3), better reliability, and most of all increased efficiency which leads to greater throughput. The E in Wi-Fi 6E is representative of the 6GHz band which further extends available spectrum and channels, providing much more space for devices. With its ability to carry more data than both 2.4 and 5 GHz, the 6GHz band allows fans to flawlessly stream and share their favorite moments.

OFDMA and Uplink MU-MIMO

Wi-Fi 6/6E makes use of Orthogonal Frequency-Division Multiple Access (OFDMA) and introduces Uplink Multiple-Input, Multiple-Output (UL MU-MIMO). These technologies provide the ability to deliver simultaneous bidirectional communication between Wi-Fi 6/6E access points and clients.  While MU-MIMO has been around since Wi-Fi 5, the ability to have clients utilize this on the uplink is new to Wi-Fi 6/6E.  This means more simultaneous users getting a better experience because the network can prioritize and schedule traffic and applications.

This is particularly important to the large stadiums and concert venues I spend a lot of time in. Uplink traffic typically far exceeds the downlink due to the number of connected users taking photos and videos and having those instantly uploaded to the cloud.  See below graphic from a recent event in a large stadium where the uplink traffic more than doubled the downlink traffic.

Wi-Fi 6E, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Guides, Cisco Learning, Cisco Prep, Cisco

1200 MHz of wide-open spectrum


Wi-Fi 6E includes up to 1200 MHz of additional spectrum in the 6GHz band. The additional spectrum adds a ton more space for devices with plenty of channels. This helps us avoid the excessive collisions and contention for airtime that has become normal in these types of venues. In case you’re not aware, contention and collisions cause slow response times, introduce latency, disconnect devices from the network, and ultimately, drive less than positive experiences. Now apply this to large sports venues and music festivals and you can see how the additional spectrum allows fans to flawlessly stream and share their favorite moments without interruption.   It’s like adding a ton of additional lanes to a congested highway!

Something to keep in mind, some countries, such as the U.S. and Canada are allocating the entire 1200 MHz while others, only a portion. The below map is current from the date of this posting:

Wi-Fi 6E, Cisco Exam, Cisco Exam Prep, Cisco Tutorial and Materials, Cisco Guides, Cisco Learning, Cisco Prep, Cisco

OpenRoaming and Wi-Fi 6E: seamless and fast


Many of Cisco’s customers, especially those that specialize in entertainment, are jumping onto the OpenRoaming train. OpenRoaming, a technology developed by Cisco and standardized by the Wireless Broadband Alliance, enables seamless and secure connectivity to participating networks. Events such as Live Nation’s BottleRock and the USGA’s U.S. Open, to name a few, use OpenRoaming to automatically connect thousands of attendees to the Wi-Fi network without the use of usernames or passwords. Add in Wi-Fi 6E and its ability to support faster speeds and more devices, and you have the recipe for exceptional guest Wi-Fi experiences.

All in all, Wi-Fi 6E at large venues is a game changer that enables more devices to connect with less contention for space, increased speed, better reliability, and more robust security. It’s a match made in IT heaven.

Stay tuned for more on Wi-Fi 6E!

Source: cisco.com