The world’s wireless systems are getting huge upgrades this year and next: 5G cellular is beginning its rollout, with the promise of much faster speeds; and Wi-Fi is getting a big upgrade too, with the release of Wi-Fi 6 devices that will give us not just better speed, but better battery life and reliability. There’s one thing that Wi-Fi really needs, though, so we can take the best advantage of its new promise. More radio-frequency spectrum.
In 2020, we will finally get it: A big chunk of new wireless spectrum in the 6 Gigahertz (GHz) band – potentially from 5.925 GHz up to 7.125 GHz.
When Wi-Fi was first developed, it used spectrum in the 2.4 GHz range. From the start, the air was crowded. 2.4 GHz was, and is, used by many other device types, including cordless phones, Bluetooth devices, and some IoT protocols.
In 1997, parts of the 5 GHz spectrum opened up, which the newer standards like 802.11n (now called Wi-Fi 4) can use, and which 802.11ac (Wi-Fi 5) must use. Access to 5 GHz spectrum was last expanded in 2003, with a new subset of the band that can only be used by devices that dynamically avoid previous allocations for 5 GHz radar.
Since then, the use of Wi-Fi has grown dramatically, taking on more of the global data traffic (which is also growing). All that traffic has had to crowd into those frequency bands. There’s not enough capacity in them for future needs.
Please note: In this story, we discuss 5 GHz and 6 GHz, which are frequency bands, as well as the wireless standards 5G and Wi-Fi 6. The frequency ranges may sound like they are related to the wireless standards, but the terminology similarity is a coincidence.
By 2022, Wi-Fi and mobile devices will account for 79 percent of Internet traffic.
In 2020, for the first time in 17 years, we expect that Wi-Fi will get additional airspace. While we don’t know all the conditions that regulators will require for use of the 6 GHz band, we do expect access to a broad swath of spectrum. More importantly, that spectrum will, at least at first, be uncrowded by legacy devices, and will contain more contiguous, uninterrupted ranges of spectrum than any of the existing Wi-Fi bands.
Here’s why that matters.
I’ve written previously about the benefits coming to us in Wi-Fi 6 (Wi-Fi 6 Powers Real-World Wireless Enterprise Applications). The new version of Wi-Fi gets us better performance and improved battery life, for starters. But the full advantages of Wi-Fi 6 can only be realized when Wi-Fi 6 equipment isn’t trying to work around other radio standards. When a Wi-Fi 6 radio is sharing spectrum with Wi-Fi 5 (or other) radios, it may find it has to compete with those transmissions for spectrum. In particular, it can’t take full advantage of the protocols for scheduled transmitting and receiving, which could impact performance and battery life.
When a Wi-Fi 6 radio is sharing spectrum with Wi-Fi 5 (or other) radios, it may find it has to compete with nearby transmissions for spectrum, lowering performance and efficiency. In Wi-Fi 6, an access point (AP) can schedule how the devices it’s communicating with can use the spectrum millisecond-by-millisecond. The AP can also schedule multiple devices at the same time by aggregating devices into different frequencies. Such scheduling and aggregation is one of the reasons Wi-Fi 6 can offer such improved performance.
Furthermore, legacy Wi-Fi 4 and Wi-Fi 5 devices will be not be allowed in the 6 GHz band, so that Wi-Fi 6 radios on this frequency will not have to compensate for other Wi-Fi radios barging into their transmissions. The 6 GHz band will allow Wi-Fi 6 to meet the potential designed into it.
Wi-Fi spectrum, in all frequency ranges, is broken up into channels. When a radio uses Wi-Fi, it picks a channel to transmit on, and the energy it puts into adjacent channels is limited by design so it doesn’t bleed into neighboring channels. Current channels in the 2.4 and 5 GHz range are mostly 20 MHz or 40 MHz wide, with a very few that use 80 MHz or even 160 MHz. The wider the channels (literally, the bandwidth), the faster the data throughput can be. There aren’t enough wide-band channels on the 2.4 and 5 GHz frequencies to support wireless network growth.
Wi-Fi 6 at 6 GHz gets more channels that are 160 GHz wide, which will allow many more simultaneous users to transmit and receive at the highest possible speed.
The new 6 GHz spectrum is valuable not just to Wi-Fi, so we hope that the cellular and local wireless communities can cooperate on ways to share these frequencies. But in the shorter term, when 6 GHz frequencies become available to Wi-Fi, this expansion will also serve the cellular business. In fact, 5G cellular will need Wi-Fi to have this new capacity.
As more users take up 5G cellular and become accustomed to even higher speeds when they are mobile and outdoors, they will expect that experience to seamlessly transfer to their indoor spaces. The current 5 GHz Wi-Fi spectrum will strain to carry that load. Cellular carriers need solid solutions to take care of their customers when they move into spaces not well-covered by their outdoor networks.
With Wi-Fi getting additional capacity, the likelihood of building seamless hand-off experiences goes up. This will improve satisfaction and productivity for all wireless users no matter what networks they use.
We also expect that the cellular carriers will want to take full advantage of OpenRoaming to make the wireless experience as seamless as possible.
Wi-Fi can be used for more than data transfer. It can also geolocate devices using it – an important capability since satellite-based GPS doesn’t generally work well in the in-building domain of Wi-Fi.
The 6 GHz band will allow for greater location accuracy than other Wi-Fi bands, because location accuracy is proportional to channel width, and as we discussed above, almost all the 6 GHz channels are wider than channel widths now used in 2.4 and 5 GHz.
Improved and reliable location accuracy can lead to entirely new solutions and business benefits. Already our own Cisco DNA Spaces is providing new analytics that go straight to the bottom line for business.
While we don’t know precisely which parts of the 6 GHz spectrum will be opened up to Wi-Fi 6, nor exactly when, we are highly confident that sometime in 2020 we’ll know how much of that frequency will become available. The proposal on the table as I write this is for one half of the 6 GHz band to be freed up in the US, with more to come a year following; and forabout 500 megahertz of the range to open up in Europe.
We are gratified to see the various standard-setting and regulatory agencies we work with moving in a direction that will serve the needs of business and users, and keep expanding the scope of what we can achieve with wireless networking.
When Wi-Fi was first developed, it used spectrum in the 2.4 GHz range. From the start, the air was crowded. 2.4 GHz was, and is, used by many other device types, including cordless phones, Bluetooth devices, and some IoT protocols.
In 1997, parts of the 5 GHz spectrum opened up, which the newer standards like 802.11n (now called Wi-Fi 4) can use, and which 802.11ac (Wi-Fi 5) must use. Access to 5 GHz spectrum was last expanded in 2003, with a new subset of the band that can only be used by devices that dynamically avoid previous allocations for 5 GHz radar.
Since then, the use of Wi-Fi has grown dramatically, taking on more of the global data traffic (which is also growing). All that traffic has had to crowd into those frequency bands. There’s not enough capacity in them for future needs.
Please note: In this story, we discuss 5 GHz and 6 GHz, which are frequency bands, as well as the wireless standards 5G and Wi-Fi 6. The frequency ranges may sound like they are related to the wireless standards, but the terminology similarity is a coincidence.
In 2020, for the first time in 17 years, we expect that Wi-Fi will get additional airspace. While we don’t know all the conditions that regulators will require for use of the 6 GHz band, we do expect access to a broad swath of spectrum. More importantly, that spectrum will, at least at first, be uncrowded by legacy devices, and will contain more contiguous, uninterrupted ranges of spectrum than any of the existing Wi-Fi bands.
Here’s why that matters.
A Closed Course
I’ve written previously about the benefits coming to us in Wi-Fi 6 (Wi-Fi 6 Powers Real-World Wireless Enterprise Applications). The new version of Wi-Fi gets us better performance and improved battery life, for starters. But the full advantages of Wi-Fi 6 can only be realized when Wi-Fi 6 equipment isn’t trying to work around other radio standards. When a Wi-Fi 6 radio is sharing spectrum with Wi-Fi 5 (or other) radios, it may find it has to compete with those transmissions for spectrum. In particular, it can’t take full advantage of the protocols for scheduled transmitting and receiving, which could impact performance and battery life.
When a Wi-Fi 6 radio is sharing spectrum with Wi-Fi 5 (or other) radios, it may find it has to compete with nearby transmissions for spectrum, lowering performance and efficiency. In Wi-Fi 6, an access point (AP) can schedule how the devices it’s communicating with can use the spectrum millisecond-by-millisecond. The AP can also schedule multiple devices at the same time by aggregating devices into different frequencies. Such scheduling and aggregation is one of the reasons Wi-Fi 6 can offer such improved performance.
Furthermore, legacy Wi-Fi 4 and Wi-Fi 5 devices will be not be allowed in the 6 GHz band, so that Wi-Fi 6 radios on this frequency will not have to compensate for other Wi-Fi radios barging into their transmissions. The 6 GHz band will allow Wi-Fi 6 to meet the potential designed into it.
Wide Lanes
Wi-Fi spectrum, in all frequency ranges, is broken up into channels. When a radio uses Wi-Fi, it picks a channel to transmit on, and the energy it puts into adjacent channels is limited by design so it doesn’t bleed into neighboring channels. Current channels in the 2.4 and 5 GHz range are mostly 20 MHz or 40 MHz wide, with a very few that use 80 MHz or even 160 MHz. The wider the channels (literally, the bandwidth), the faster the data throughput can be. There aren’t enough wide-band channels on the 2.4 and 5 GHz frequencies to support wireless network growth.
Wi-Fi 6 at 6 GHz gets more channels that are 160 GHz wide, which will allow many more simultaneous users to transmit and receive at the highest possible speed.
The 5G Imperative
The new 6 GHz spectrum is valuable not just to Wi-Fi, so we hope that the cellular and local wireless communities can cooperate on ways to share these frequencies. But in the shorter term, when 6 GHz frequencies become available to Wi-Fi, this expansion will also serve the cellular business. In fact, 5G cellular will need Wi-Fi to have this new capacity.
As more users take up 5G cellular and become accustomed to even higher speeds when they are mobile and outdoors, they will expect that experience to seamlessly transfer to their indoor spaces. The current 5 GHz Wi-Fi spectrum will strain to carry that load. Cellular carriers need solid solutions to take care of their customers when they move into spaces not well-covered by their outdoor networks.
With Wi-Fi getting additional capacity, the likelihood of building seamless hand-off experiences goes up. This will improve satisfaction and productivity for all wireless users no matter what networks they use.
We also expect that the cellular carriers will want to take full advantage of OpenRoaming to make the wireless experience as seamless as possible.
Bonus: Location Accuracy
Wi-Fi can be used for more than data transfer. It can also geolocate devices using it – an important capability since satellite-based GPS doesn’t generally work well in the in-building domain of Wi-Fi.
The 6 GHz band will allow for greater location accuracy than other Wi-Fi bands, because location accuracy is proportional to channel width, and as we discussed above, almost all the 6 GHz channels are wider than channel widths now used in 2.4 and 5 GHz.
Improved and reliable location accuracy can lead to entirely new solutions and business benefits. Already our own Cisco DNA Spaces is providing new analytics that go straight to the bottom line for business.
When, Not If
While we don’t know precisely which parts of the 6 GHz spectrum will be opened up to Wi-Fi 6, nor exactly when, we are highly confident that sometime in 2020 we’ll know how much of that frequency will become available. The proposal on the table as I write this is for one half of the 6 GHz band to be freed up in the US, with more to come a year following; and forabout 500 megahertz of the range to open up in Europe.
We are gratified to see the various standard-setting and regulatory agencies we work with moving in a direction that will serve the needs of business and users, and keep expanding the scope of what we can achieve with wireless networking.
0 comments:
Post a Comment