Showing posts with label Advanced Malware Protection. Show all posts
Showing posts with label Advanced Malware Protection. Show all posts

Wednesday, 2 January 2019

Cognitive Intelligence: Empowering Security Analysts, Defeating Polymorphic Malware

In psychology, the term “cognition” refers to a human function that is involved in gaining knowledge and intelligence. It helps describe how people process information and how the treatment of this information may lead to various decisions and actions. Individuals use cognition every day. Examples as simple as the formation of concepts, reasoning through logic, making judgments, problem-solving, and achieving goals all fall under the purview of this term.

In cybersecurity, applying the principles of cognition helps us turn individual observed threat events into actionable alerts full of rich investigative detail. This process improves over time through continuous learning. The goal is to boost discovery of novel or morphing threats and streamlining of the cybersecurity incident response. The work of the security operations teams can be vastly optimized by delivering prioritized actionable alerts with rich investigative context.

Enhancing Incident Response


Let’s take a moment to think of the tasks that a security team performs on a day-to-day basis:

◈ Looking through ever-increasing numbers of suspicious events coming from a myriad of security tools.
◈ Conducting initial assessments to determine whether each particular anomaly requires more investigation time or should be ignored.
◈ Triaging and assigning priorities.

All of these actions are based on the processes, technology, and knowledge of any particular security team. This initial decision-making process by itself is crucial. If a mistake is made, a valid security event could be ignored. Or, too much time could be spent to investigate what ends up being a false positive. These challenges, coupled with the limited resources that organizations typically have, as well as complexities associated with attack attribution, may be daunting.

That’s why security teams should embrace automation. At Cisco, we’re committed to helping organizations step up their game through the use of our Cognitive Intelligence. This technology allows correlating telemetry from various sources (Cisco and 3rdparty web proxy logs, Netflow telemetry, SHA256 hash values and file behaviors from AMP and Threat Grid) to produce accurate context-rich threat knowledge specific to a particular organization. This data, combined with the Global Risk Map of domains on the Internet, allows organizations to confidently identify variants of memory-resident malware, polymorphic malware with diversified binaries, and in general any innovative malware, that attempts to avoid detection by an in-line blocking engine.

As a result of automation like this, less time needs to be spent on detailed threat investigations to confirm the presence of a breach, identify the scope and begin triage. And that will in turn dramatically help mitigate the shortage of skilled security personnel by increasing the effectiveness of each analyst.

Cisco Tutorial and Material, Cisco Certification, Cisco Learning, Cisco Study Materials, Cisco Malware, Cisco Security
Example of a Confirmed Threat Campaign

In a sense, Cognitive Intelligence algorithms mimic the threat hunting process for observed suspicious events. It identifies combinations of features that are indicative of malware activity, in a similar fashion that an incident responder would do, starting with relatively strong indicators from one dataset and pivoting through the other datasets at its disposal. The pivot point may lead to more evidence, such as behavioral anomalies that help reinforce the infection hypothesis. Alternatively, the breach presumption may fade away and can either be terminated very quickly or re-started when new data becomes available. These algorithms are similar to incident response playbooks used by Cisco CSIRT and other incident response teams, but operate on a much larger scale.

What’s New in 2018: Probabilistic Threat Propagation


One of the example algorithms that we call Probabilistic Threat Propagation (PTP) is designed to scale up the number of retrospectively convicted malware samples (threat actor weapon), as well as the number of malicious domains (threat actor infrastructure) across the Cisco AMP, Threat Grid, and Cognitive knowledge bases.

Cisco Tutorial and Material, Cisco Certification, Cisco Learning, Cisco Study Materials, Cisco Malware, Cisco Security
Probabilistic Threat Propagation in a Nutshell

PTP algorithm monitors network communications from individual hashes to hosts on the Internet and constructs a graph based on the observed connections. The goal is to accurately identify polymorphic malware families and yet unknown malicious domains, based on the partial knowledge of some of the already convicted hashes and domains. The key here is that malware authors often reuse the same command-and-control (C2) infrastructure. Hence the C2 domains often remain the same across polymorphic malware variants. At the same time, these domains are usually not accessed for benign purposes.

For example, if an unknown file connects to a confirmed malicious domain, there’s a certain probability that this sample is malicious. Likewise, if a malicious file establishes a connection to an unknown domain, there’s a probability for this domain to be harmful. To confirm such assumptions, Cisco leverages statistical data surrounding the domain to determine how frequently it’s accessed, by which files and so on.

Cisco Tutorial and Material, Cisco Certification, Cisco Learning, Cisco Study Materials, Cisco Malware, Cisco Security
Graph built by Probabilistic Threat Propagation Algorithm

The capability that we have introduced helps security analysts track and detect new versions of malware, including polymorphic and memory-resident malware, given the fact that C2 infrastructure remains intact. Similarly, this method is capable of tracking migrations of attacker’s C2 infrastructure, given the knowledge of malicious binaries which belong to the same malicious family. Cognitive Intelligence helps leverage specific telemetry from a stack of security products (file hashes from AMP, file behaviours from Threat Grid, anomalous traffic statistics and threat campaigns from Cognitive). That allows Cisco to model threat actor behaviors across both the endpoint and the network to be able to better protect its customers.

Probabilistic Threat Propagation algorithm also provides additional sensitivity to file-less malware (that doesn’t have file footprint on the disk of the system) and process injections. Such infections can be detected when a legitimate process or a business application starts communicating with domains associated with C2 infrastructure, that other malicious binaries predominantly contacted.

The beauty of this capability is that it runs offline in the Cisco cloud infrastructure, and therefore does not require any additional computational resources from customers’ endpoints or infrastructure. It simply works to provide better protection and the increased count of retrospective detections for novel variants of known malware.

Measuring Results


This blog entry wouldn’t be complete if we didn’t speak about the initial results, that just this single algorithm delivers. From a single malicious binary, Probabilistic Threat Propagation algorithm is able to identify tens if not hundreds of additional binaries that are a part of the same threat family and that also get convicted as a part of this analysis. Similarly, with this new mechanism of tackling polymorphism, we will generally be able to identify tens of additional infected hosts affected by a polymorphic variant of a particular threat. That is especially rewarding when it comes to measuring the positive impact on Cisco customers.

Cisco Tutorial and Material, Cisco Certification, Cisco Learning, Cisco Study Materials, Cisco Malware, Cisco Security
Scaling threat detection efficacy with Probabilistic Threat Propagation

Cisco AMP for Endpoints and other AMP-enabled integrations (AMP for Email Security, AMP for WSA, AMP for Networks, AMP for Umbrella) leverage AMP cloud intelligence to provide improved threat detection capabilities boosted by the PTP algorithm.

Wednesday, 12 September 2018

The Role of Visibility in SecOps

The bad guys aren’t going away.  In fact, they are getting smart, more creative, and just as determined to wreak havoc for profit as they have ever been.  The good news is Security solutions and methodologies are getting better.  Next Generation Firewalls, Malware Protection, and Access Control are not only improving, but in some cases, working in concert together.   This is good news for any security team and a lot of these solutions are part of any security stack.

But how do you know when you have been breached?  How long has that attack been roaming through the network?  Who is affected?  These are the questions that visibility helps answer.  Access Control solutions are now commonplace in letting us know the “Who”, “What”, “Where”, and “When”.  Now we need to know the “How” and “Why”.  We need to know these answers not just for the network, but for our Cloud solutions as well.

Visibility into the Conversation


Learning what “normal” behavior looks like is a great place to start. Knowing how hosts behave and interact allows you to react quickly when a host deviates from the norm.  Stealthwatch provides visibility into every conversation, baselines the network, and alerts to changes.  Not all changes are bad and this level of insight will also provide critical information for network planning.

Cisco Stealthwatch Cloud, Advanced Malware Protection, Security, Cisco Study Materials

Visibility into the Files


Since malware began, there has been a need to inspect files to ensure that they have not been compromised or the source of corruption themselves.  A downloaded file that was benign yesterday could morph into something detrimental tomorrow.  Advanced Malware Protection (AMP) does retrospective analysis such that it doesn’t just inspect a file once and moves on.  It has the ability to look back in time and see exactly when and how a file changed, what it did, who it effected.  Additionally, a file discovered to be malicious on one machine can be quarantined and an update can be sent to all machines that prevents them from ever even opening that file, now limiting the exposure to the rest of the network.

Cisco Stealthwatch Cloud, Advanced Malware Protection, Security, Cisco Study Materials

Visibility into the Threats


Since it’s not a matter if a breach will occur, but when, the ultimate goal is to limit exposure and remove the threat as quickly as possible.  Threat hunting is costly, time consuming, and necessary in getting operations back to normal.  Knowing where to begin, determining the impact, removing the threat, and ultimately protecting against it from happening again is a challenge in of itself.  The longer the threat is in the network, the more damage it will do.  AMP Visibility helps in finding the threats quickly, identifying those effected, and eliminating the threat faster than ever.  Visibility displays the entire path of the malicious event, including URL, SHA values, file information, and more.  This information effectively reduces the time spent threat hunting.

Cisco Stealthwatch Cloud, Advanced Malware Protection, Security, Cisco Study Materials

Visibility into the Internet


We are also constantly being misled and misdirected to go to sites that we shouldn’t.  Whether it’s as simple as a fat-finger or being intentionally misled, anyone can easily end up in a very dark place.  Embedded links within an email that appears legitimate brings our guard down.  The first URL you click on may be OK (think reddit.com ) but what happens as you go deeper?  Should your employees be allowed to click on a link that is two hours old?  How can I protect my employees when they are off-net?  These are questions asked every day.  Cisco Umbrella is built into the foundation of the Internet and as a DNS service, endpoints can be protected both on and off-net.  Umbrella’s Investigate lets you explore deeper into the URL to get a complete picture of everything; from where the site is hosted, who owns it, it’s reputation, and even Threat scores via integrations with AMP’s Threat Grid.  Umbrella’s view of the Internet can prevent up to 90% of threats from ever making it to the endpoint, thus making the rest of the security stack that much more efficient.

Visibility is the Key!


The bad guys only need to be successful at breaching the network once.  The good guys need to be successful EVERY time.  Firewalls, Intrusion Detection, Endpoint protection, and other security solutions are critical in handling 99% of the risks.  That’s a great number.  It’s that 1% that gets through that keeps security people awake at night and is going to cause the most harm.  Having the ability to see not just the north-south traffic, but the east-west, is vital to detecting anomalies early.  When there is an event that requires research, reducing the time it takes to get to the bottom of it and ultimately eliminating the threat quickly keeps business humming optimally.

Friday, 29 June 2018

Secure Your Mobile Connections with New IP Blocking Feature

When downloading an application from the App Store, do you actually check the logistics of it? For example, how is it connecting to the internet? Or an even more relatable scenario: that game you were playing while waiting in line paused to present an advertisement, was it triggered by an IP address or a DNS request? The majority of times, users don’t check or understand those nitty gritty details. We simply see something we like, click, and begin launching the app onto our devices.

Cisco Certification, Cisco Learning, Cisco Tutorial and Material, Cisco Study Material

However, what if that application is connecting to a malicious IP address? And in a case that your employee is using a corporate-owned iOS device and downloads that app; this presents a security gap.

Cover All Your Bases: IP Addresses and DNS Requests


The Umbrella extension within Cisco Security Connector serves as a first line of defense against threats by protecting users from malicious domains. Umbrella delivers both DNS-layer encryption and enforcement on top of an intelligent proxy that provides URL and file inspection for risky domains. Therefore, when your employee attempts to make any connections to the internet, Cisco Security Connector is there to protect your business against suspicious app and user-initiated network requests.

But applications can also connect to malicious IP addresses. To counter that, Cisco Security Connector is continuing to innovate with a newly added IP Blocking feature as a part of Clarity. This IP Blocking feature now provides complete network protection for your corporate-owned iOS devices. With just a few clicks, adminscan simply add a suspicious IP address to their blacklist and regulate that list accordingly; giving more control to businesses. Now, whether it’s a direct IP connection or DNS request, Cisco Security Connector can secure your users end-to-end.

Cisco Certification, Cisco Learning, Cisco Tutorial and Material, Cisco Study Material
Image: iOS Events List

Cisco Security Connector


Cisco Security Connector allows businesses to gain deep visibility and control across all devices. With the ability to integrate with existing MDM/EMM such as Cisco Meraki Systems Manager, VMware AirWatch Cloud EMM, and MobileIron on-premises EMM, Cisco Security Connector ensures ease of deployment as well as adaptability to a business’s current environment.

With similar Cisco Advanced Malware Protection (AMP) capabilities extended to iOS devices, users can now gain insight into all application and device behaviors on all devices. Though most importantly, as part of the AMP console, admins can now have one single location to manage all their endpoints.

Unfortunately, we can’t control our employee’s actions on our network, but what we can control are the results of it. So, cover all your bases with Cisco Security Connector.

Friday, 6 April 2018

IcedID Banking Trojan teams up with Rovnix for distribution

In November 2017 security researchers reported a new banking Trojan known as “IcedID”. At the time of discovery IcedID was being distributed by Emotet. In late February and throughout March 2018 Cisco noticed an increase in IcedID infections being detected throughout the AMP ecosystem. Like in November 2017, some of the infections could be traced to Emotet, but this time, many detections could instead be traced to emails with attached malicious Microsoft Word documents containing macros. When the malicious documents are opened and the macros are enabled, Rovnix would be downloaded and executed, which subsequently downloads IcedID. In addition to Rovnix, many of the samples downloaded a second payload, a Bytecoin miner (Bytecoin is a crypto currency similar to Bitcoin).

Thursday, 10 August 2017

Deep Dive into AMP and Threat Grid integration with Cisco Email Security

In this blog post, we are going to dive deeper and explain the workflows of AMP and Threat Grid integration with Cisco Email Security (applies to both Cloud Email Security and on premise Email Security Appliance), as well as help administrators refine security posture in their organizations. Let’s start with a quick recap of how file reputation, file analysis and file retrospection work together in general.