Showing posts with label Amazon Web Services. Show all posts
Showing posts with label Amazon Web Services. Show all posts

Saturday, 24 December 2022

Cisco Joins the Launch of Amazon Security Lake

The Cisco Secure Technical Alliance supports the open ecosystem and AWS is a valued technology alliance partner, with integrations across the Cisco Secure portfolio, including SecureX, Secure Firewall, Secure Cloud Analytics, Duo, Umbrella, Web Security Appliance, Secure Workload, Secure Endpoint, Identity Services Engine, and more.

Cisco Secure and AWS Security Lake


We are proud to be a launch partner of AWS Security Lake, which allows customers to build a security data lake from integrated cloud and on-premises data sources as well as from their private applications. With support for the Open Cybersecurity Schema Framework (OCSF) standard, Security Lake reduces the complexity and costs for customers to make their security solutions data accessible to address a variety of security use cases such as threat detection, investigation, and incident response. Security Lake helps organizations aggregate, manage, and derive value from log and event data in the cloud and on-premises to give security teams greater visibility across their organizations.

With Security Lake, customers can use the security and analytics solutions of their choice to simply query that data in place or ingest the OCSF-compliant data to address further use cases. Security Lake helps customers optimize security log data retention by optimizing the partitioning of data to improve performance and reduce costs. Now, analysts and engineers can easily build and use a centralized security data lake to improve the protection of workloads, applications, and data.

Cisco Secure Firewall


Cisco Secure Firewall serves as an organization’s centralized source of security information. It uses advanced threat detection to flag and act on malicious ingress, egress, and east-west traffic while its logging capabilities store information on events, threats, and anomalies. By integrating Secure Firewall with AWS Security Lake, through Secure Firewall Management Center, organizations will be able to store firewall logs in a structured and scalable manner.

eNcore Client OCSF Implementation


The eNcore client provides a way to tap into message-oriented protocol to stream events and host profile information from the Cisco Secure Firewall Management Center. The eNcore client can request event and host profile data from a Management Center, and intrusion event data only from a managed device. The eNcore application initiates the data stream by submitting request messages, which specify the data to be sent, and then controls the message flow from the Management Center or managed device after streaming begins.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

These messages are mapped to OCSF Network Activity events using a series of transformations embedded in the eNcore code base, acting as both author and mapper personas in the OCSF schema workflow. Once validated with an internal OCSF schema the messages are then written to two sources, first a local JSON formatted file in a configurable directory path, and second compressed parquet files partitioned by event hour in the S3 Amazon Security Lake source bucket. The S3 directories contain the formatted log are crawled hourly and the results are stored in an AWS Security Lake database. From there you can get a visual of the schema definitions extracted by the AWS Glue Crawler, identify fieldnames, data types, and other metadata associated with your network activity events. Event logs can also be queried using Amazon Athena to visualize log data.

Get Started


To utilize the eNcore client with AWS Security Lake, first go to the Cisco public GitHub repository for Firepower eNcore, OCSF branch.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Download and run the cloud formation script eNcoreCloudFormation.yaml.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

The Cloud Formation script will prompt for additional fields needed in the creation process, they are as follows:

Cidr Block:  IP Address range for the provisioned client, defaults to the range shown below

Instance Type:  The ec2 instance size, defaults to t2.medium

KeyName  A pem key file that will permit access to the instance

AmazonSecurityLakeBucketForCiscoURI: The S3 location of your Data Lake S3 container.

FMC IP: IP or Domain Name of the Cisco Secure Firewall Mangement Portal

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

After the Cloud Formation setup is complete it can take anywhere from 3-5 minutes to provision resources in your environment, the cloud formation console provides a detailed view of all the resources generated from the cloud formation script as shown below.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Once the ec2 instance for the eNcore client is ready, we need to whitelist the client IP address in our Secure Firewall Server and generate a certificate file for secure endpoint communication.

In the Secure Firewall Dashboard, navigate to Search->eStreamer, to find the allow list of Client IP Addresses that are permitted to receive data, click Add and supply the Client IP Address that was provisioned for our ec2 instance.  You will also be asked to supply a password, click Save to create a secure certificate file for your new ec2 instance.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Download the Secure Certificate you just created, and copy it to the /encore directory in your ec2 instance.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Use CloudShell or SSH from your ec2 instance, navigate to the /encore directory and run the command bash encore.sh test

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

You will be prompted for the certificate password, once that is entered you should see a Successful Communication message as shown below.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Run the command bash encore.sh foreground

This will begin the data relay and ingestion process. We can then navigate to the S3 Amazon Security Lake bucket we configured earlier, to see OCSF compliant logs formatted in gzip parquet files in a time-based directory structure. Additionally, a local representation of logs is available under /encore/data/* that can be used to validate log file creation.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Amazon Security Lake then runs a crawler task every hour to parse and consume the logs files in the target s3 directory, after which we can view the results in Athena Query.

Cisco Security, Cisco Career, Cisco Skills, Cisco Prep, Cisco Tutorial and Materials, Cisco Guides

Source: cisco.com

Sunday, 3 May 2020

Cisco Secure Cloud Architecture for AWS

More and more customers are deploying workloads and applications in Amazon Web Service (AWS). AWS provides a flexible, reliable, secure, easy to use, scalable and high-performance environment for workloads and applications.

AWS recommends three-tier architecture for web applications. These tiers are separated to perform various functions independently. Multilayer architecture for web applications has a presentation layer (web tier), an application layer (app tier), and a database layer (database tier). There is the flexibility to make changes to each tier independent of another tier. The application requires scalability and availability; the three-tier architecture makes scalability and availability for each tier independent.

Amazon Web Services, AMP for Endpoints, AWS, Cisco Security, Cisco Stealthwatch Cloud, Cisco Exam Prep

Figure 1: AWS three-tier architecture

AWS has a shared security model i.e., the customers are still responsible for protecting workloads, applications, and data. The above three-tiered architecture offers scalable and highly available design. Each tier can scale-in or scale-out independently, but Cisco recommends using proper security controls for visibility, segmentation, and threat protection.

Amazon Web Services, AMP for Endpoints, AWS, Cisco Security, Cisco Stealthwatch Cloud, Cisco Exam Prep

Figure 2: Key pillars of a successful security architecture

Cisco recommends protecting workload and application in AWS using a Cisco Validated Design (CVD) shown in Figure 3. All the components mentioned in this design have been verified and tested in the AWS cloud. This design brings together Cisco and AWS security controls to provide visibility, segmentation, and threat protection.

Visibility: Cisco Tetration, Cisco Stealthwatch Cloud, Cisco AMP for Endpoint, Cisco Threat Response, and AWS VPC flow logs.

Segmentation: Cisco Next-Generation Firewall, Cisco Adaptive Security Appliance, Cisco Tetration, Cisco Defense Orchestrator, AWS security group, AWS gateway, AWS VPC, and AWS subnets.

Threat Protection: Cisco Next-Generation Firewall (NGFWv), Cisco Tetration, Cisco AMP for Endpoints, Cisco Umbrella, Cisco Threat Response, AWS WAF, AWS Shield (DDoS – Basic or Advance), and Radware WAF/DDoS.

Another key pillar is Identity and Access Management (IAM): Cisco Duo and AWS IAM

Amazon Web Services, AMP for Endpoints, AWS, Cisco Security, Cisco Stealthwatch Cloud, Cisco Exam Prep

Figure 3: Cisco Validated Design for AWS three-tier architecture

Cisco security controls used in the validated design (Figure 3):

◉ Cisco Defense Orchestrator (CDO) – CDO can now manage the AWS security group. CDO provides micro-segmentation capability by managing firewall hosts on the workload.

◉ Cisco Tetration (SaaS) – Cisco Tetration agent on AWS instances forwards “network flow and process information” this information essential for getting visibility and policy enforcement.

◉ Cisco Stealthwatch Cloud (SWC) – SWC consumes VPC flow logs, cloud trail, AWS Inspector, AWS IAM, and many more. SWC includes compliance-related observations and it provides visibility into your AWS cloud infrastructure

◉ Cisco Duo – Cisco Duo provides MFA service for AWS console and applications running on the workloads

◉ Cisco Umbrella – Cisco Umbrella virtual appliance is available for AWS, using DHCP options administrator can configure Cisco Umbrella as a primary DNS. Cisco Umbrella cloud provides a way to configure and enforce DNS layer security to workloads in the cloud.

◉ Cisco Adaptative Security Appliance Virtual (ASAv): Cisco ASAv provides a stateful firewall, network segmentation, and VPN capabilities in AWS VPC.

◉ Cisco Next-Generation Firewall Virtual (NGFWv): Cisco NGFWv provides capabilities like stateful firewall, “application visibility and control”, next-generation IPS, URL-filtering, and network AMP in AWS.

◉ Cisco Threat Response (CTR): Cisco Threat Response has API driven integration with Umbrella, AMP for Endpoints, and SWC (coming soon). Using this integration security ops team can get visibility and perform threat hunting.

AWS controls used in the Cisco Validated Design (Figure 3):

◉ AWS Security Groups (SG) – AWS security groups provide micro-segmentation capability by adding firewalls rules directly on the instance virtual interface (elastic network interface – eni).

◉ AWS Web Application Firewall (WAF) – AWS WAF protects against web exploits.

◉ AWS Shield (DDoS) – AWS Shield protects against DDoS.

◉ AWS Application Load Balancer (ALB) and Network Load Balancer (NLB) – AWS ALB and NLB provides load balancing for incoming traffic.

◉ AWS route 53 – AWS Route53 provides DNS based load balancing and used for load balancing RAVPN (SSL) across multiple firewalls in a VPC. 

Radware controls used in the Cisco Validated Design (Figure 3):

◉ Radware (WAF and DDoS): Radware provides WAF and DDoS capabilities as a service.

Cisco recommends enabling the following key capabilities on Cisco security controls. These controls not only provide unmatched visibility, segmentation and threat protection, but they also help in adhering to security compliance.

Amazon Web Services, AMP for Endpoints, AWS, Cisco Security, Cisco Stealthwatch Cloud, Cisco Exam Prep

In addition to the above Cisco security control, Cisco recommends using the following native AWS security components to protect workloads and applications.

Amazon Web Services, AMP for Endpoints, AWS, Cisco Security, Cisco Stealthwatch Cloud, Cisco Exam Prep

Wednesday, 19 April 2017

Cisco SD-WAN Networking Service for Public Clouds

Enterprises across all verticals are migrating their applications to public cloud (IaaS) services and taking advantage of the great cost savings on compute hosting. But the cost benefits shouldn’t affect security, scalability or customer experience. Enterprises require the same level of secure network access, control and visibility in the cloud as they do with on-premise networks. Cloud providers offer basic network functions like IPSEC VPN, BGP routing, NAT. It’s a good enough solution to build a simple site-to-site VPN network with some routing, but enterprises could quickly face these challenges: