Thursday, 26 November 2020

Enabling Integration via Webex Teams – All Together Now

Cisco Prep, Cisco Learning, Cisco Tutorial and Material, Cisco Guides, Cisco Exam Prep

Enabling Integration via Webex Teams and Cisco DNA, SD-Wan, Intersight, Thousand Eyes via Cloud API Gateway

I was really excited to have a unique opportunity to put together a team of my fellow engineers to work on a Collaboration hacking contest within Cisco. This annual event is usually in-person for a day or two in San Jose, making it out of reach for my nomadic desert comrades located in Arizona. This year, however, remote is the new normal. This unique situation made it possible for my ragtag band of misfits to participate in events regardless of our geography. So we embarked on a mission to enable webhook integration for Webex teams, so that our products can send notifications into Teams, just as they can into email.

Cisco Prep, Cisco Learning, Cisco Tutorial and Material, Cisco Guides, Cisco Exam Prep

A cloud native yet cloud agnostic solution


In order to do this we decided to make sure this wasn’t only able to support diverse products, but also, diverse clouds. A cloud native, yet cloud agnostic solution based upon serverless infrastructure supporting standard webhooks and HTTPS Post messages. We decided on Google Cloud platform and Amazon Web Services for our multi cloud endeavor.

The initial idea was actually for a separate use case – I have esp8266 modules integrated with Teams for the use case of being notified when my garage door is opened/closed, my bearded dragon’s cage is hot, etc. As these scale in number, if I ever were to change my security bot token or room ID, I would have to go re-flash all of my IoT Sensors to match. So, it creates an operational problem for leveraging Teams as a IoT device receiver or third party integrator.

Enable cloud as an API gateway


The idea was to enable cloud as an API gateway to accept requests, do advanced security checks, and decouple the Webex Teams security and context information from what is flashed onto the sensors to better manage the lifecycle. But extending this to webbooks was a natural evolution that seemed to have the most immediate impact to customers. When Demo’ing some of our cloud technologies (Intersight, Meraki), customers saw that notifications can go to webhook or email, and naturally inquired about their Webex Teams integration.

Cisco Prep, Cisco Learning, Cisco Tutorial and Material, Cisco Guides, Cisco Exam Prep

By enabling the webhook capability, we immediately added support for all of our product sets that support webhooks to integrate with Webex Teams. And do so without requiring any change on either the product, or Webex Teams. We did want to have native “handlers” in the code to handle differences in webhook formatting between different products. For our project we created handlers for Cisco DNA Center and Meraki. We had started work on Thousand Eyes but didn’t have the lab instance able to send webhooks at the time we finished the project. The amount of effort to create and modify a handler is as simple as 20 minutes worth of effort ensuring that the JSON fields that you care about, are included in what is sent to Teams.

Cisco Prep, Cisco Learning, Cisco Tutorial and Material, Cisco Guides, Cisco Exam Prep

The code is available on Github


Of note, while the code should have been very consistent between solutions, there is a difference in how Google integrates their API with their cloud functions compared to AWS. The API gateway on GCP has been out for a while, but right now integration of the API gateway on Google for cloud functions is in Beta and does require a bit more lift to setup. I expect this will normalize as it is brought to market. I also want to caveat that by noting I was seeking a functional product, closer integration with GCP teams probably would have helped with how I managed some error handling in Cloud Functions to make it integrate with API GW.

Wednesday, 25 November 2020

Retail network segmentation landscape

Cisco Prep, Cisco Tutorial and Materials, Cisco Career, Cisco Guides, Cisco Exam Prep

For as long as I can remember, retailers have recognized the importance of segmentation. The perils of mixing transactional data with other types of network traffic are significant. Yet, many retailers have found that a lack of attention in this area results in the compromise of transactional or Personally Identifiable Information (PII).

The challenge becomes exponentially more complex as the use of technology expands:

The long-predicted explosion of Internet of Things (IoT) devices is finally here. As many businesses respond to unpredictable business circumstances, it has become increasingly important that they have near real-time operational data on their stores and distribution centers. What is the current occupancy of my store? Are my chillers, freezers and hot tables working properly? Where are my associates and customers? What is my current inventory-on-hand (and what’s on the inbound truck, and when will it be here)? These questions can all be answered using IoT sensors. It is worth noting though that IoT sensors are either limited, or single-function devices, and therefore are not always able to defend themselves. If left unprotected, these devices can present a tempting attack surface for threat actors.

Point of Sale may not always be a static location. We are seeing more retailers shun the traditional fixed point of sale and adopt mobile devices. In some cases the POS may still be at a lane or cash wrap, but it may also be used for line busting, curbside pickup, home delivery, and for omni-channel returns. These additional use cases shift the emphasis from dedicated payment terminals that communicate directly with a payment processor, to multifunction devices sitting on the wireless network.

Guest wireless is now table stakes – customers expect to be able to send and receive text and email, access their shopping lists, or showroom their impending purchase to ensure they are getting the best price. A robust wireless network will not only be an expectation going forward, but a necessity to support associate efficiency and customer needs. With the advent of 5G networks, any communication that happens in the store via a mobile device needs to happen over the store wireless network, because 5G signals are unlikely to penetrate the structure of the building. Voice and data will cease when customers enter the store, unless the device can seamlessly roam onto the store network. That network will need the resilience and capacity to handle that traffic. Customers who cannot continue their conversations or access their data while in the store are likely to “vote with their feet” and shop elsewhere. In much the same way as guests now judge hotels by how fast and reliable the internet service is in their rooms, connectivity will be paramount for consumers and guests alike.

Cisco Prep, Cisco Tutorial and Materials, Cisco Career, Cisco Guides, Cisco Exam Prep

The inextricable move to the cloud has accelerated recently for multiple reasons – a need to

◉ reduce the physical IT footprint in the store
◉ stand up and configure new or pop-up stores quickly
◉ capitalize on the elastic capacity that cloud processing provides for busy periods
◉ leverage Software as a Service offerings for business systems such as supply chain and customer relationship management.

This shift to public, private and hybrid cloud can present new complexities and create a reliance on external parties, resulting in limited visibility and management to the retailer.

Cisco Prep, Cisco Tutorial and Materials, Cisco Career, Cisco Guides, Cisco Exam Prep

Many systems that are considered non-essential to the core retail mission (such as mechanical maintenance and physical security) are increasingly being outsourced. These moves result in third-party managed (or unmanaged) devices and sensors residing on the store or distribution center network.

These changes in the day-to-day operations of retailers can significantly increase the attack surface, and consequently the risk profile, for the retailer if not appropriately mitigated. The key is having a well-planned and executed segmentation and access control policy to ensure that devices and users can only access the systems and data appropriate for their role. Traditionally, this has been a somewhat manual process, which may be perfectly feasible for smaller organizations, but much more complex for larger retailers.

Tuesday, 24 November 2020

Going Multicloud? Can you relate to one of these six use cases?

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Learning, Cisco Prep, Cisco Career

In 1996, Cisco and HCL began working together by setting up an offshore development center in India. Over the past 24 years, we have strategically joined forces to bring to market a broad portfolio of products and services that we deliver to more than 100 shared customers, encompassing data center, networks, collaboration, IoT, security, and application monitoring. We continue to invest in resource development through training, centers of excellence, labs, joint go-to-market activities, and collaborating as 360-degree partners developing Cisco products.

One of our joint development efforts created HCL VelocITy: A multicloud framework powered by Cisco. VelocITy goes beyond the world of software-defined solutions to offer a reusable, repeatable, reference architecture delivered with a consumable, flexible, commercial construct. This framework leverages components from Cisco and other ecosystem partners, along with HCL’s position as a market leader in data center outsourcing and hybrid infrastructure managed services.

Many enterprises now operate multiple cloud environments, deploying a blend of private on-premises and public cloud infrastructures that best meet their application and business requirements. Executing a successful multicloud strategy can be extremely challenging, however.

A need to make multicloud easier

As enterprises start planning their multicloud environments, they need to answer a number of questions that can be crucial for achieving their digitization goals, such as:

◉ Do they have the required and adequately skilled resources in-house for the new technology landscape?

◉ Do they have a standard reference architecture that will apply across their on-premises and cloud environments?

◉ How will they secure the entire environment?

◉ What will be the cost impact of migrating to a multicloud environment? Do they have visibility into the potential cost differences when migrating workloads to the cloud?

In addition, once they’ve made key planning decisions, the process of execution can become a real nightmare. A customer with its own IT team may find it extremely difficult migrating to a multicloud environment due to the high level of complexity.

To help customers respond to these challenges, HCL built VelocITy. As you’ll see, it offers substantial, measurable benefits.

Figure 1  The VelocITy multicloud architecture

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Learning, Cisco Prep, Cisco Career

A pre-integrated, certified, multicloud reference architecture


The HCL VelocITy framework, as shown in Figure 1, provides a pre-integrated, certified reference architecture with pre-engineered components, incorporating the people, processes, and technology infrastructure required to provide end-to-end service delivery for multicloud deployments. Simply put, it removes the pain a customer can experience when migrating to a multicloud environment. They don’t need to choose different products from different vendors and then attempt to integrate all into an optimal and secure solution that meets their specific use case needs.

The top six highly sought after use cases


Leveraging its experience helping many Fortune 500 customers design and implement their data center migration strategies, HCL has identified its top six validated use cases for multicloud. Aligned with major industry trends in deploying multicloud environments and summarized in Figure 2, these represent use cases that can be implemented with HCL VelocITy. These six use cases also expand to over 30 detailed use cases for day 0, day 1, and day 2.

Figure 2  Six validated multicloud use cases

Cisco Exam Prep, Cisco Tutorial and Material, Cisco Learning, Cisco Prep, Cisco Career

Built on Cisco technology


In developing the VelocITy stack, HCL evaluated many potential technology partners. A clear success criterion was the potential partner’s ability to deliver an end-to-end stack with flexible consumption model options, along with having a high level of ecosystem partner integrations and single-call, day 2 break/fix support.

Cisco met these requirements, leveraging its in-depth hardware and software product portfolio. In addition, many of Cisco’s products are now offered through a flexible consumable model, leveraging the Cisco Capital®Open Pay® solution. A few of the Cisco products incorporated into the VelocITy stack include Cisco UCS®, HyperFlex™, Cisco ACI®, Cisco Intersight™, Cisco Workload Optimization Manager, AppDynamics®, Cisco Container Platform, Cisco CloudCenter™, and Cisco Tetration Analytics™.

Adding to this list, Cisco has more than 65 integrated and certified ecosystem partner offerings available to fill out the VelocITy solution.

Migrate to a hybrid, multicloud environment with confidence


Cisco’s market-leading technology, available through a modern OpEx-based business model, in combination with HCL’s vast experience in multicloud deployments, brings to market a truly differentiated offering.

The numbers speak for themselves. For example, by deploying HCL VelocITy, both a large hospitality chain and a European telco reduced their TCO by 40 percent, while seeing a 50-60 percent improvement in IT automation.

If you’re migrating to a multicloud environment to meet your specific use case needs, explore HCL VelocITy powered by Cisco.

Monday, 23 November 2020

A Look to 2021 with Cisco Meraki

Cisco Prep, Cisco Certification, Cisco Guides, Cisco Learning

As we look back on 2020, the pandemic has proven to be a clear digitization accelerator—especially in areas critical to COVID-19 response. Companies within the financial sector are going beyond the lobby and into the cloud.

Some of the key benefits of embracing a cloud-managed IT solution include a decrease in time to market thanks to automation and zero-touch provisioning, the ability to simplify visibility and troubleshoot while helping IT teams get ahead of issues, and the ability to focus extra time and budget on resources and business-critical projects.

Managing safe migration to the cloud has never been more important. At Cisco Meraki, our cloud-based platform enables agility, scale, and simplification for financial institutions big and small. As we look ahead to 2021, a few key areas of focus stand out.

Meet the secure branch of the future

Providing reliable, secure connectivity while turning data into intelligent insights about how your branch infrastructure is operating—and how it can operate better—is critical. This includes improving your customer experience and engaging with them in new ways from the moment they enter the branch. For example, consider personalizing customer engagements through digital and in-branch resources, then leverage collected insights to inform and improve customer experience.   

Manage video analytics intelligently

IoT cameras and sensors combined with Meraki Insight are a powerful tool to effectively manage security, while ensuring a safe customer experience. They allow you to: 

- Manage video analytics intelligently

- Maintain social distancing protocols

- Eliminate outdated hardware

Cisco Prep, Cisco Certification, Cisco Guides, Cisco Learning

Cloud-based team support


Today’s new normal has required businesses to rethink how to help their employees collaborate safely while working from remote locations. These cloud-based solutions are helping companies support their off-site workforce. Some examples include safe remote access for payments, insurance claims, and loan approvals—all while maintaining policy compliance. Teams are able to connect to a secure network from any location for mission-critical and sensitive data.

All in all, the shift to cloud-managed IT solutions has proven to be beneficial for companies within the financial sector. As we look ahead to 2021, security and analytics will continue to be key considerations for change.

Friday, 20 November 2020

Fast Track to Success in Cisco 300-420 ENSLD Certification


Cisco ENSLD Exam Description:

This exam certifies a candidate's knowledge of enterprise design including advanced addressing and routing solutions, advanced enterprise campus networks, WAN, security services, network services, and SDA. The course, Designing Cisco Enterprise Networks, helps candidates to prepare for this exam.

Cisco 300-420 Exam Overview:

  • Exam Name: Designing Cisco Enterprise Networks
  • Exam Number: 300-420 ENSLD
  • Exam Price: $300 USD
  • Duration: 90 minutes
  • Number of Questions: 55-65
  • Passing Score: Variable (750-850 / 1000 Approx.)
Also Read:-

Thursday, 19 November 2020

Introduction to Programmability – Part 3

This is Part 3 of the “Introduction to Programmability” series. If you haven’t already done so, I strongly urge you to check out Parts 1 & 2 before you proceed. You will be missing on a lot of interesting information if you don’t.

Part 1 of this series defined and explained the terms Network Management, Automation, Orchestration, Data Modeling, Programmability and API. It also introduced the Programmability Stack and explained how an application at the top layer of the stack, wishing to consume an API exposed by a device at the bottom of the stack, does that.

Part 2 then introduced and contrasted two types of APIs: RPC-based APIs and RESTful APIs. It also introduced the NETCONF protocol, which is an RPC-based protocol/API, along with the (only) encoding that it supports and uses: XML.

Note: You will notice that I use the words API and protocol interchangeably. As mentioned in Part 2, a NETCONF API means that the client and server will use the NETCONF protocol to communicate together. The same applies to a RESTCONF API. Therefore, both NETCONF and RESTCONF may be labelled as protocols, or APIs.

In this part of the series, you will see the other type of APIs in action, namely RESTful APIs. You will see first how vanilla HTTP works. Then we will build on what we introduced in Part 2 and dig just a little deeper into REST. Then explain the relationship between HTTP, REST and RESTful APIs. I like to classify RESTful API into two types: Industry-standard and native (aka vendor/platform-specific). We will briefly cover RESTCONF, an industry-standard API as well as NX-API REST, a native API exposed by programmable Nexus switches. Finally, you will see how to consume a RESTful API using Python.

On a side note, you may be wondering how so much information will be covered in one blog post. Well, the challenge has always existed between depth and breadth with respect to topic coverage. In this series, I attempt to familiarize you with as many topics as possible and answer as many common questions related to programmability as feasible. The intention is not for you to come out of this 15-minute read an expert, but to be able to identify concepts and technologies that thus far have sounded foreign to you as a network engineer.

HTTP

As a network engineer, before I got into network programmability many many years ago, I knew that HTTP was the protocol on which the Internet was based. I knew, as required by my work, that HTTP was a client-server protocol that used TCP port 80 (and 443 in the case of HTTPS). I also knew it had something to do with the URIs I entered into my web browser to navigate to a web page. That was it.

But what really is HTTP ?

HTTP stands for HyperText Transfer Protocol. Hypertext is text that contains one or more hyperlinks. A hyperlink is a reference or pointer to data known as the resource or the target of the hyperlink. The text of the hyperlink itself is called the anchor text. That target may be a number of things such as a webpage on the Internet, a section in a Word document or a location on your local storage system.

A little piece of trivia: In 1965 an American scientist called Ted Nelson coined the term hypertext to describe non-linear text. Non-linear refers to a lack of hierarchy for the links between the documents. Then in 1989, Sir Timothy Berners-Lee, wrote the first web client and server implementation that utilized hypertext. That protocol would be used to fetch the data that a hyperlink pointed to and eventually became HTTP. Today, Sir Timothy is best known as the inventor of the World Wide Web.

Therefore, pressing on the anchor text https://blogs.cisco.com/developer/intro-to-programmability-2 will send a request to the blogs.cisco.com server to fetch the resource at /developer/intro-to-programmability-2, which is the HTML content of the webpage at that URI. This content will be parsed and rendered by the web browser and displayed in the browser window for you to view.

So an HTTP workflow involves a client establishing a TCP connection to an HTTP server. This connection is done over port 80 by default, but the port is usually configurable. Once the TCP session is up, the client sends a number of HTTP request messages. The server responds to each request message with a response message. Once the HTTP transactions are completed, the TCP session is torn down by either of the endpoints.

A client HTTP request message includes a Universal Resource Identifier (URI) that is a hierarchical address composed of segments separated by a slash (/). This URI identifies the resource on the server that the client is targeting with this request. In the realm of network programmability, the resource identified by a URI may be the interface configuration on a switch or the neighbors in the OSPF neighbor table on a router.

The client request message will also include an HTTP method that indicates what the client wishes to do with the resource targeted by the URI in the same request. An example of a method is GET which is used to retrieve the resource identified by target URI. For example, a GET request to the URI identifying the interface configuration of interface Loopback 100 will return the configuration on that interface. A POST method, on the other hand, is used to edit the data at the target URI. You would use the POST method to edit the configuration of interface Loopback 100.

In addition to the URI and method, an HTTP request includes a number of header fields whose values hold the metadata for the request. Header fields are used to attach information related to the HTTP connection, server, client, message and the data in the message body.

Figure 1 shows the anatomy of an HTTP request. At the top of the request is the start line composed of the HTTP method, URI and HTTP version. Then comes the headers section. Each header is a key-value pair, separated by a colon. Each header is on a separate line. In more technical terms, each header is delimited by a Carriage Return Line Feed (CRLF). The headers section is separated from the message body with an empty line (two CRLFs). In the figure, the message body is empty, since this is a GET request: the client is requesting a resource from the server, in this case, the operational data of interface GigabitEthernet2, so there is no data to send in the request, and hence, no message body.

Cisco Prep, Cisco Tutorial and Material, Cisco Exam Prep, Cisco Tutorial and Material, Cisco Certification, Cisco Career

Figure 1 – Anatomy of an HTTP request

When a server receives a request from the client, it processes the request, and sends back an HTTP response message. An HTTP response message will include a status code that indicates the result of processing the request, and a status text that describes the code. For example, the status code and text 200 OK indicate that the request was successfully processed, while the (notorious) code and text 404 Not Found indicate that the resource targeted by the client was not found on the server.

The format of a response message is very similar to a request, except that the start line is composed of the HTTP version, followed by a status code and text. Also, the body is usually not empty. Figure 2 shows the anatomy of an HTTP response message.

Cisco Prep, Cisco Tutorial and Material, Cisco Exam Prep, Cisco Tutorial and Material, Cisco Certification, Cisco Career

Figure 2 – Anatomy of an HTTP response message

Studying and hence understanding and using HTTP revolves around the following points:

– Target URI: You need to know the correct syntax rules of a URI, such as which characters are allowed and which are not, and what each segment of the URI should contain. URI segments are called scheme, authority, path, query and fragment. You also need to understand the correct semantics rules of a URI, that is, to be able to construct URIs to correctly target the resources that you want to operate on. URI syntax rules are universal. Semantics rules, on the other hand, depend on which protocol you are working with. In other words, a syntactically correct URI that targets a specific resource using RESTCONF will not be the same URI to target that same resource on that same device using another RESTful API, such as NX-API REST.

– Request method: You need to know the different request methods and understand the effect that each would have on a resource. GET fetches a resource (such as a web page or interface configuration) while POST edits a resource (such as add a record to a database, or change the IP address on a router interface). Commonly used methods are GET, HEAD, OPTIONS, POST, PATCH PUT and DELETE. The first three are used to retrieve a resource while the other four are used to edit, replace or delete a resource.

– Server status codes: Status codes returned by servers in their HTTP response messages are classified into the following sub-categories:

◉ 1xx: Informational messages to the client. The purpose of these response messages is to convey the current status of the connection or transaction in an interim response, before the final response is sent to the client.

◉ 2xx: The request was successfully processed by the server. Most common codes in this category are 200 (OK) and 201 (Created). The latter is used when a new resource is created by the server as a result of the request sent from the client.

◉ 3xx: Used to redirect the client, such as when the client requests a web page and the server attempts to redirect the client to a different web page (common use-case is when a web page owner changes the location of the web page and wishes to redirect clients attempting to browse to the old URI).

◉ 4xx: Signals that there is something wrong with the request received from the client. Common codes in this category are 401 (Bad Request), 403 (Forbidden), and 403 (Not Found).

◉ 5xx: Signals an error on the server side. Common status codes in this category are 500 (Internal Error), 503 (Service Unavailable), and 504 (Gateway Timeout).

– Message body: Understanding how to construct the message body. If model-driven programmability is used, the message body will depend on two things:

◉ Syntax rules governed by the encoding used: a message encoded in XML will have different syntax rules than a message encoded in JSON, even if both are intended to accomplish the same task

◉ Semantics rules governed by the data model used: You may target the same resource and accomplish the same end result using two (or more) different message bodies, each depending on the hierarchy of elements defined by the referenced data model.

– Headers: Understanding which headers to include in your request message is very important to get the results you want. For example, in Figure 1 the first header right after the start line Accept: application/yang-data+json is the client’s way of telling the server (the DevNet IOS-XE router/sandbox in this case) that it will only accept the requested resource (the interface operational data) encoded in JSON. If this field was application/yang-data+xml, the server’s response body would have been encoded in XML instead. Header values in response messages also provide valuable information related to the server on which the resource resides (called origin server), any cache servers in the path, the resources returned, as well as information that will assist to troubleshoot error conditions in case the transaction did not go as intended.

HTTP started off at version 0.9, then version 1.0. The current version is 1.1 and is referred as HTTP/1.1. Most of HTTP/1.1 is defined in the six RFCs 7230 – 7235, each RFC covering a different functional part of the protocol.

HTTP/2 is also in use today, however, RFC 7540 states that “This specification [HTTP/2.0] is an alternative to, but does not obsolete, the HTTP/1.1 message syntax. HTTP’s existing semantics remain unchanged.” This means that HTTP/2.0 does not change the message format of HTTP/1.1. It simply introduces some enhancements to HTTP/1.1. Therefore, everything you have read so far in this blog post remains valid for HTTP/2.

HTTP/2 is based on a protocol called SPDY developed Google. HTTP/2 introduces a new framing format that breaks up an HTTP message into a stream of frames and allows multiplexing frames from different streams on the same TCP connection. This, along with several other enhancements and features promise a far superior performance over HTTP/1.1. The gRPC protocol is based on HTTP/2.

It may come as a surprise to some, but HTTP/3 is also under active development, however, it is not based on TCP altogether. HTTP/3 is based on another protocol called QUIC initially developed by, as you may have guessed, Google, then later adopted by the IETF and described in draft-ietf-quic-transport. HTTP/3 takes performance to whole new level. However, HTTP/3 is still in its infancy.

HTTP uses the Authorization, WWW-Authenticate, Proxy-Authorization and Proxy-Authenticate headers for authentication. However, in order to provide data confidentiality and integrity, HTTP is coupled with Transport Layer Security (TLS 1.3). HTTP over TLS is called HTTPS for HTTP Secure.
But what does HTTP have to do with REST and RESTful APIs ?

As you have read in Part 2 of this series, REST is a framework for developing APIs. It lays down 6 constraints, 5 mandatory and 1 optional. As a reminder, here are the constraints:

◉ Client-Server based
◉ Stateless
◉ Cacheable
◉ Have a uniform interface
◉ Based on a layered system
◉ Utilize code-on-demand (Optional)

In a nutshell, HTTP is the protocol that is leveraged to implement an API that complies with these constraints. But again, what does all this mean?

As you already know by now, HTTP is a client-server protocol. That’s the first REST constraint.

HTTP is a stateless protocol, as required by the second constraint, because when a server sends back a response to a client request, the transaction is completed and no state information pertaining to this specific transaction is maintained on the server. Any single client request contains all the information required to fully understand and process this request, independent of any previous requests.

Ever heard of cache servers ? An HTTP resource may be cached at intermediate cache servers along the path between the client and server if labeled as cacheable by the sending endpoint. Moreover, HTTP defines a number of header fields to support this functionality. Therefore, the third REST constraint is satisfied.

HTTP actually does not deal with resources, but rather with representations of these resources. Data retrieved from a server may be encoded in JSON or XML. Each of these is a different representation of the resource. A client may send a POST request message to edit the configuration of an interface on a router, and in the process, communicates a desired state for a resource, which, in this case, is the interface configuration. Therefore, a representation is used to express a past, current or desired state of a resource in a format that can be transported by HTTP, such as JSON, XML or YAML. This is actually where the name REpresentational State Transfer (REST) comes from.

The concept of representations takes us directly to the fourth constraint: regardless of the type of resource or the characteristics of the resource representation expressed in a message, HTTP provides the same interface to all resources. HTTP adheres to the fourth constraint by providing a uniform interface for clients to address resources on servers.

The fifth constraint dictates that a system leveraging RESTful APIs should be able to support a layered architecture. A layered architecture segregates the functional components into a number of hierarchical layers, where each layer is only aware of the existence of the adjacent layers and communicates only with those adjacent layers. For example, a client may interact with a proxy server, not the actual HTTP server, while not being aware of this fact. On the other end of the connection, a server processing and responding to client requests in the frontend may rely on an authentication server to authenticate those clients.

The final constraint, which is an optional constraint, is support for Code on Demand (CoD). CoD is the capability of downloading software from the server to the client, to be executed by the client, such as Java applets or JavaScript code downloaded from a web site and run by the client web browser.

Therefore, by providing appropriate, REST-compliant transport to a protocol in order to expose an API to the external world, HTTP makes that protocol or API RESTful.

Are you still wondering what is HTTP, REST and RESTful APIs ?

JSON – JavaScript Object Notation


Similar to XML, JSON is used to encode the data in the body of HTTP messages. As a matter of fact, the supported encoding is decided by the protocol used, not by HTTP. NETCONF only supports XML while RESTCONF supports both XML and JSON. Other APIs may only support JSON. Since XML was covered in Part 2 of this series, we will cover JSON in this part.

Unlike XML, that was developed to be primarily machine-readable, JSON was developed to be a human-friendly form of encoding. JSON is standardized in RFC 8259. JSON is much simpler than XML and is based on four simple rules:

1. Represent your objects as key-value pairs where the key and value are separated with a colon
2. Enclose each object in curly braces
3. Enclose arrays in square brackets (more on arrays in minute)
4. Separate objects or array values with commas

Let’s start with a very simple example – an IP address:

{“ip”: “10.20.30.40”}

The object here is enclosed in curly braces as per rule #2. The key (ip) and value (10.20.30.40) are separated by a colon as per rule #1. Keep in mind that the key must be a string and therefore will always be enclosed in double quotes. The value is also a string in the example since it is enclosed in double quotes. Generally, a value may be any of the following types:

◉ String: such as “Khaled” – always enclosed in double quotes
◉ Number: A positive, negative, fraction, or exponential number, not enclosed in quotes
◉ Another JSON object: shown in the next example
◉ Array: An ordered list of values (of any type) such as [“Khaled”,“Mohammed”,“Abuelenain”]
◉ Boolean: true or false
◉ null: single value of null

A very interesting visual description of value types is given here: https://www.json.org/.

Now assume that there is an object named address that has two child JSON objects, ip and netmask. That will be represented as follows:

{
  "address": {
    "ip": "100.100.100.100",
    "netmask": "255.255.255.255"
  }
}

Notice that the objects ip and netmask are separated by a comma as per rule #4.
What if the address object needs to hold more than one IP address (primary and secondary) ? Then it can be represented as follows:

{
  "address": [
    {
      "ip": "100.100.100.100",
      "netmask": "255.255.255.255"
    },
    {
      "ip": "200.200.200.200",
      "netmask": "255.255.255.255"
    }
  ]
}

In this example, address is a JSON object whose value is an array, therefore, everything after the colon following the key is enclosed in square brackets. This array has two values, each an JSON object in itself. So this is an array of objects. Notice that the in addition to the comma separating the ip and netmask objects inside each object, there is also a comma after the closing curly brace around the middle of the example. This comma separates the two values of the array.
And that’s about all you need to know about JSON !

Standards-based vs. Native RESTful APIs: RESTCONF & NX-API REST


As you have seen in the previous section, any RESTful protocol/API employing HTTP at the Transport Layer (of the programmability stack – NOT the OSI 7-layer model) will need to define three things:

1. What encoding(s) does it supports (XML, JSON, YAML, others) ?

2. How to construct a URI to target a specific resource ? A URI is a hierarchical way of addressing resources, and in its absolute form, a URI will uniquely identify a specific resource. Each protocol will define a different URI hierarchy to achieve that.

3. Which data models are supported and, combined with point number 1 above, will decide what the message body will look like.

RESTCONF is a standards-based RESTful API defined in RFC 8040. RESTCONF is compatible with NETCONF and is sometimes referred to as the RESTful version of NETCONF. This means that they can both coexist on the same platform without conflict. Although RESTCONF supports a single “conceptual” datastore, there are a set of rules that govern the interaction of RESTCONF with NETCONF with respect to datastores and configuration. While NETCONF support XML only, RESTCONF supports both XML and JSON. RESTCONF supports the same YANG data models supported by NETCONF. Therefore, a message body in RESTCONF will be model-based just as you have seen with NETCONF, with a few caveats. However, RESTCONF only implements a subset of the functions of NETCONF.

The architectural components of RESTCONF can be summarized by the 4-layer model in Figure 3. The 4 layers are Transport, Messages, Operations and Content. Just like NETCONF.

Cisco Prep, Cisco Tutorial and Material, Cisco Exam Prep, Cisco Tutorial and Material, Cisco Certification, Cisco Career

Figure 3 – The RESTONF architectural 4-Layer model

Now to the RESTful part of RESTCONF. RESTCONF supports all HTTP methods discussed so far. The key to understanding RESTCONF then is to understand how to construct a URI to target a resource. While it is out of scope of this (very) brief introductory post to get into the fine details of the protocol, it is important to get at least a glimpse of RESTCONF URI construction, as it is the single most important factor differentiating the protocol right after its compatibility with NETCONF. The resource hierarchy for RESTCONF is illustrated in Figure 4.

Cisco Prep, Cisco Tutorial and Material, Cisco Exam Prep, Cisco Tutorial and Material, Cisco Certification, Cisco Career

Figure 4 – Resource hierarchy in RESTCONF

The branch of this hierarchy that relates to configuration management and datastores is
API -> Datastore -> Data. A URI in RESTCONF has the general format of

https://device_address:port/API_Resource/Datastore_Resource/Resource-Path

Without getting into too much details, the Cisco implementation of RESTCONF uses the string restconf as the value of the API Resource and the string data as the value of the Datastore Resource. So on the DevNet IOS-XE Sandbox, for example, all RESTCONF URIs will start with https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/. In the next section you see how to configure a loopback address using a RESTCONF URI and a YANG data model.

Now on the other side of the spectrum are native RESTful APIs. Native RESTful APIs are vendor-specific and are usually platform specific as well. On example of a RESTful API that is widely used by the programmability community is NX-API REST that is exposed by programmable Nexus switches. NX-API REST is a RESTful API that uses HTTP request and response messages composed of methods, URIs, data models and status codes, like all other RESTful APIs. However, this API uses a Cisco-specific data model called the Management Information Tree (MIT). The MIT is composed of Managed Objects (MO). Each MO represents a feature or element on the switch that can be uniquely targeted by a URI.

When the switch receives an HTTP request to an NX-API REST URI, an internal Data Management Enginer (DME) running on the switch validates the URI, substitutes missing values with default values, where applicable, and, if the client is authorized to perform the method stated in the client request, the MIT is updated accordingly.

Similar to RESTCONF, NX-API REST supports payload bodies in both XML and JSON.

RESTful APIs and Python


The requests package has been developed to abstract the implementation of an HTTP client using Python. The Python Software Foundation recommends using the requests package whenever a “higher-level” HTTP client-interface is needed (https://docs.python.org/3/library/urllib.request.html).

The requests package is not part of the standard Python library, therefore it has to be manually installed using pip. Example 1 shows the installation of requests using pip3.7.

Example 1 Installing the requests package using pip

[kabuelenain@server1 ~]$ sudo pip3.7 install requests

Collecting requests

  Using cached https://files.pythonhosted.org/packages/51/bd/23c926cd341ea6b7dd0b2a00aba99ae0f828be89d72b2190f27c11d4b7fb/requests-2.22.0-py2.py3-none-any.whl

Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.7/site-packages (from requests) (2.7)

Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/site-packages (from requests) (2018.10.15)

Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.7/site-packages (from requests) (3.0.4)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/site-packages (from requests) (1.24.1)

Installing collected packages: requests

Successfully installed requests-2.22.0

[kabuelenain@server1 ~]$

After the requests package is installed, you are ready to import it into your code. Using the requests package is primarily based on creating a response object, and then extracting the required information from that response object.

The simplified syntax for creating a response object is:

Response_Object = requests.method(uri, headers=headers, data=message_body)

To create an object for a GET request, in place of requests.method, use requests.get. For a POST request, use requests.post, and so forth.

Replace the uri parameter in the syntax with the target URI. The headers parameter will hold the headers and the data parameter will hold the request message body. The uri should be a string, the headers parameter should be a dictionary and the data parameter may be provided as a dictionary, string, or list. The parameter data=payload may be replaced by json=payload, in which case the payload will be encoded into JSON automatically.

Some of the information that you can extract from the Response Object is:

◉ Response_Object.content: The response message body (data) from the server as a byte object (not decoded).
◉ Response_Object.text: The decoded response message body from the server. The encoding is chosen automatically based on an “educated guess”.
◉ Response_Object.encoding: The encoding used to convert Response_Object.content to ◉ Response_Object.text. You can manually set this to a specific encoding of your choice.
◉ Response_Object.json(): The decoded response message body (data) from the server encoded in json, if the response resembles a json object (otherwise an error is returned).
◉ Response_Object.url: The full (absolute) target uri used in the request.
◉ Response_Object.status_code: The response status code.
◉ Response_Object.request.headers: The request headers.
◉ Response_Object.headers: The response headers.

In Example 2, a POST request is sent to the DevNet IOS-XE Sandbox to configure interface Loopback123. Looking at the URI used, you can guess that the Python script is consuming the RESTCONF API exposed by the router. Also, from the URI as well as the message body, it is evident that the YANG model used in this example is ietf-interfaces.yang (available at https://github.com/YangModels/yang/tree/master/vendor/cisco/xe/1731).

Example 2 POST request using the requests package to configure interface Loopback123

#!/usr/bin/env python3

import requests

url = 'https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/'

headers = {'Content-Type': 'application/yang-data+json',
    'Authorization': 'Basic ZGV2ZWxvcGVyOkMxc2NvMTIzNDU='}
payload = '''
{
  "interface": {
    "name": "Loopback123",
    "description": "Creating a Loopback interface using Python",
    "type": "iana-if-type:softwareLoopback",
    "enabled": true,
    "ietf-ip:ipv4": {
      "address": {
        "ip": "10.0.0.123",
        "netmask": "255.255.255.255"
      }
    }
  }
}
'''

Response_Object = requests.post(url,headers=headers,data=payload,verify=False)

print('The server response (data) as a byte object: ','\n\n',Response_Object.content,'\n')

print('The decoded server response (data) from the server: ','\n\n',Response_Object.text,'\n')

print('The encoding used to convert Response_Object.content to Response_Object.text: ','\n\n', Response_Object.encoding,'\n')

print('The full (absolute) URI used in the request: ','\n\n',Response_Object.url,'\n')

print('The response status code: ','\n\n',Response_Object.status_code,'\n')

print('The request headers: ','\n\n',Response_Object.request.headers,'\n')

print('The response headers :','\n\n',Response_Object.headers,'\n')

Example 3 shows the result from running the previous script.

Example 7-3 Running the script and creating interface Loopback123

[kabuelenain@server1 Python-Scripts]$ ./int-loopback-create.py

/usr/lib/python3.6/site-packages/urllib3/connectionpool.py:847: InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings

  InsecureRequestWarning)

The server response (data) as a byte object: 

 b''

The decoded server response (data) from the server: 

The encoding used to convert Response_Object.content to Response_Object.text: 

 ISO-8859-1

The full (absolute) URI used in the request: 

 https://sandbox-iosxe-latest-1.cisco.com:443//restconf/data/ietf-interfaces:interfaces/

The response status code: 

 201

The request headers: 

 {'User-Agent': 'python-requests/2.20.0', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Type': 'application/yang-data+json', 'Authorization': 'Basic ZGV2ZWxvcGVyOkMxc2NvMTIzNDU=', 'Content-Length': '364'}

The response headers :

 {'Server': 'nginx/1.13.12', 'Date': 'Fri, 13 Nov 2020 11:00:28 GMT', 'Content-Type': 'text/html', 'Content-Length': '0', 'Connection': 'keep-alive', 'Location': 'https://sandbox-iosxe-latest-1.cisco.com/restconf/data/ietf-interfaces:interfaces/interface=Loopback123', 'Last-Modified': 'Fri, 13 Nov 2020 11:00:14 GMT', 'Cache-Control': 'private, no-cache, must-revalidate, proxy-revalidate', 'Etag': '"1605-265214-914179"', 'Pragma': 'no-cache'}

[kabuelenain@server1 Python-Scripts]$

As you can see, the status code returned in the server response message is 201 (Created) which means that the Loopback interface was successfully created. You may have noticed that the message body (actual data in the message) is empty, since there is nothing to return back to the client. However, the Location header in the response headers (highlighted in the example) returns a new URI that points to the newly created resource.

Wednesday, 18 November 2020

Envisioning the ideal enterprise collaboration experience

Cisco Prep, Cisco Exam Prep, Cisco Certification, Cisco Learning, Cisco Guides, Cisco Career

As remote work becomes the new normal for many enterprises, collaboration is being tested like never before. And few feel the pressure more than enterprise IT leaders.

In addition to delivering performance and reliability, they need to envision how their organizations can use technology to achieve results remotely. They’re searching for an ideal vision of a modern meeting and collaboration experience.

What does that look like? A hybrid cloud collaboration platform can provide an attractive answer. It’s a highly scalable, easy-to-access solution that offers substantial benefits.

To help formulate your strategy, here are areas where hybrid cloud collaboration can help you capture more value and maximize results.

Collaboration modernization doesn’t require ripping or replacing

Most enterprise organizations have sizable investments in collaboration technology or collaboration-adjacent solutions: endpoints, applications, PBX systems, and more.

As you seek to optimize your collaboration experience, remember that reshaping and reinvigorating your approach doesn’t require you to do away with these existing investments.

The ideal collaboration experience is seamless

Enterprise organizations employ an average of seven different collaboration platforms, such as calendar, IM, email, meetings, file sharing, customer contact center, and so on.

To streamline the user experience, you need to centralize and consolidate tools. It should be a unified experience, not a disparate one. Consistency is key. As you simplify your strategy, you’ll get stronger diagnostics and analytics, and reduce IT costs, too.

Remove friction from your user’s workflow

How many clicks does it take your users to get from, say, an Excel spreadsheet to video-chatting with their project partner? It’s an important number. There’s no such thing as too few clicks.

So how do you reduce the number of clicks? Integration. Embedding collaboration in everyday work applications like Microsoft Office 365, Epic, or ServiceNow allows users to reach out to colleagues without shifting focus or losing their flow.

Elevate collaboration through cloud and AI/ML

Connecting collaboration to the cloud allows you to accomplish amazing things via artificial intelligence and machine learning.

With cloud capabilities, your platform can automatically create meeting rooms when new tickets enter a tool such as ServiceNow.  Provide AI-enabled occupant counting for video rooms. Allow for hands-free collaboration and meeting room scheduling. Automatically output action items from a meeting. Or seamlessly pull up additional context as topics are discussed.

The possibilities are virtually endless.

Ensure crystal-clear audio and video

The ideal modern meeting experience has reliably great call quality. Delivering consistently great performance starts on internal networks. Intelligent networking and policy-based automation help ensure better results.

You should be mindful of your collaboration vendor’s infrastructure. Traffic flow between nodes within the provider cloud environment is also critical.

Start building your hybrid cloud collaboration experience

So how do you make your vision for ideal enterprise collaboration via hybrid cloud a reality?

Cisco Prep, Cisco Exam Prep, Cisco Certification, Cisco Learning, Cisco Guides, Cisco Career

Cisco Performance IT is a methodology that helps enterprise organizations conceive a centralized approach to collaboration—and builds a roadmap to take them there. It delivers increases in efficiency that cost-justify the investment in collaboration. These efficiencies can even enable the investment to pay for itself.

Performance IT can help you find ways to leverage your existing investments and maximize their value as your collaboration evolves.