Friday, 28 June 2019

Cisco 200-105 ICND2 Certification: Exam Profile


o progress in any field, it is essential to be familiar with the fundamentals of it. The CCNA Routing and Switching certification that you achieve from passing the 200-105 exam is one of the most fundamental and foundational certifications in the network technology. If you intend to make a career as a network engineer, this certification is one you require to have before you can move to a higher level certification.
ICND2 Exam, ICND2 Practice test, ICND2 Exam Topics, ICND2 Study Guide, ICND2 Questions, 200-105 Online Test, 200-105 Quiz
The ICND2 certification is one that makes you familiar with the fundamentals of networking, something that persists relevant even as technologies develop and change over time. After all, any progress in these technologies will rest on the fundamentals, so understanding the basics is crucial for any right network specialist. This certification will teach you to install, monitor, and troubleshoot network infrastructure products, something that were and still are at the center of the Internet.

Obtaining your ICND2 certification means that you own the basic knowledge to operate and oversee networks from all aspects, presenting you as a qualified and desired professional in the field.

ICND2 exam topics emphasis on presenting the skills and knowledge necessary to execute and support a small switched and routed network.


The 200-105 Interconnecting Cisco Networking Devices Part 2 (ICND2) is the exam associated with the CCNA Routing and Switching certification. This exam measures an applicant's knowledge and skills in LAN switching technologies, WAN technologies, IPv4 and IPv6 routing technologies, infrastructure services, and infrastructure maintenance.

Prerequisites

The recommended knowledge and skills that an applicant should have to appear for ICND2 certification exam:
  • Understand network fundamentals
  • Implement local area networks
  • Implement Internet connectivity
  • Manage network device security
  • Implement WAN connectivity
  • Implement basic IPv6 connectivity

Theses exam topics outline for the content likely to be covered on the Cisco Interconnecting Cisco Networking Devices Part 2 (ICND2) exam.

ICND2 Exam Topics:

1. LAN Switching Technologies (26%)

1 Configure, verify, and troubleshoot VLANs (normal/extended range) spanning multiple switches
  • Access ports (data and voice)
  • Default VLAN

2 Configure, verify, and troubleshoot interswitch connectivity
  • Add and remove VLANs on a trunk
  • DTP and VTP (v1&v2)

3 Configure, verify, and troubleshoot STP protocols
  • STP mode (PVST+ and RPVST+)
  • STP root bridge selection

4 Configure, verify, and troubleshoot STP-related optional features
  • PortFast
  • BPDU guard

5 Configure, verify, and troubleshoot (Layer 2/Layer 3) EtherChannel
  • Static
  • PAGP
  • LACP

6 Describe the benefits of switch stacking and chassis aggregation
7 Describe common access layer threat mitigation techniques
  • 802.1x
  • DHCP snooping
  • Nondefault native VLAN

2. Routing Technologies (29%)

1 Configure, verify, and troubleshoot Inter-VLAN routing
  • Router on a stick
  • SVI

2 Compare and contrast distance vector and link-state routing protocols
3 Compare and contrast interior and exterior routing protocols
4 Configure, verify, and troubleshoot single area and multiarea OSPFv2 for IPv4 (excluding authentication, manual summarization, filtering, redistribution, stub, virtual-link, and LSAs)
5 Configure, verify, and troubleshoot single area and multiarea OSPFv3 for IPv6 (excluding authentication, filtering, manual summarization, redistribution, stub, virtual-link, and LSAs)
6 Configure, verify, and troubleshoot EIGRP for IPv4 (excluding authentication, manual summarization, filtering, redistribution, stub)
7 Configure, verify, and troubleshoot EIGRP for IPv6 (excluding authentication, manual summarization, filtering, redistribution, stub)

3. WAN Technologies (16%)

1 Configure and verify PPP and MLPPP on WAN interfaces using local authentication
2 Configure, verify, and troubleshoot PPPoE client-side interfaces using local authentication
3 Configure, verify, and troubleshoot GRE tunnel connectivity
4 Describe WAN topology options
  • Point-to-point
  • Hub and spoke
  • Full mesh
  • Single vs. dual-homed

5 Describe WAN access connectivity options
  • MPLS
  • MetroEthernet
  • Broadband PPPoE
  • Internet VPN (DMVPN, site-to-site VPN, client VPN)

6 Configure and verify single-homed branch connectivity using eBGP IPv4 (limited to peering and route advertisement using Network command only)

4. Infrastructure Services (14%)

1 Configure, verify, and troubleshoot basic HSRP
  • Priority
  • Preemption
  • Version

2 Describe the effects of cloud resources on enterprise network architecture
  • Traffic path to internal and external cloud services
  • Virtual services
  • Basic virtual network infrastructure

3) Describe basic QoS conceptsQoS concepts
  • Marking
  • Device trust
  • Prioritization
  • Congestion management

4 Configure, verify, and troubleshoot IPv4 and IPv6 access list for traffic filtering
  • Standard
  • Extended
  • Named

5 Verify ACLs using the APIC-EM Path Trace ACL analysis tool

5. Infrastructure Maintenance (15%)

1 Configure and verify device-monitoring protocols
  • SNMPv2
  • SNMPv3

2 Troubleshoot network connectivity issues using ICMP echo-based IP SLA
3 Use local SPAN to troubleshoot and resolve problems
4 Describe device management using AAA with TACACS+ and RADIUS
5 Describe network programmability in enterprise network architecture
  • The function of a controller
  • Separation of control plane and data plane
  • Northbound and southbound APIs

6 Troubleshoot basic Layer 3 end-to-end connectivity issues

Ever since the Cisco 200-105 ICND2 certification presented, Cisco certifications have been desired by network engineers and organizations all over the world. According to the latest study, Cisco skills are among the most preferred skills in hiring requirements. They are incorporated more frequently than 97 percent of all skills inquired. The requirement for an intimate understanding of network infrastructure and protocols and how they work together has always been important. Now, that need is raising. ICND2 certification qualifies you with the expertise and skills to succeed in networking, even as technologies remain to evolve. The certification qualifies you to how to install, monitor, and troubleshoot the network infrastructure applications that are at the very heart of the Internet of Things.

Thursday, 27 June 2019

Extending an Enterprise Network? Start Here.

Cisco Certifications, Cisco Guides, Cisco Tutorials and Materials, Cisco Study Materials

IoT sensors, cameras and other smart devices are fueling opportunities to extend digitization into entirely new parts of a business. These investments can support business process transformation, enhanced operational efficiency and better, more personalized experiences for customers and employees.

But implementing IoT solutions can be daunting even to veterans of network management. That’s because most IoT sensors and devices are deployed in “uncarpeted” areas that aren’t typically connected to the enterprise network. Those areas can range from company parking lots to warehouses, distribution centers, seaports and airports. And they bring a unique set of challenges:

◈ How can IT ensure that Ethernet switches and access points can stand up to harsh conditions like extreme temperatures or exposure to shock and vibrations?

◈ As IoT devices dramatically expand the attack surface, what does it take to keep the network secure?

◈ What’s the best way to position IT to manage IoT solutions as the number of devices grows exponentially in the months and years to come?

Cisco Certifications, Cisco Guides, Cisco Tutorials and Materials, Cisco Study Materials
With the recent launch of the Extended Enterprise Cisco Validated Design (CVD) at Cisco Live, IT teams now have a proven playbook for the design, implementation and management of five Extended Enterprise use cases – Parking Lots, Warehouses, Distribution Centers, Ports and Airports.

The Extended Enterprise CVD includes in-depth design and implementation guides for Cisco’s IoT Networking Portfolio – empowering IT teams to reduce risk and accelerate speed of implementation. Although the Extended Enterprise CVD provides step-by-step guidance on taking the enterprise network to the IoT Edge, its value goes far beyond how-to instructions. Cisco engineers have tested and validated what works, proving that systems will scale and perform as intended.

As companies work to take the enterprise network to the IoT Edge, the Extended Enterprise CVD empowers IT teams with three key advantages:

1. Simplicity. Manage and monitor the enterprise network – from the office to the parking lot and beyond – through Cisco DNA Center. This “single pane of glass” provides full visibility and control. It also supports automation and analytics that simplify routine maintenance, as well as troubleshooting and guided remediation.

2. Security. Cisco’s Intent-based networking doesn’t just streamline security policy creation and application in traditional “carpeted” areas; it also automates network security in parking lots, warehouses and other rugged environments. It makes it fast and easy to ensure that IoT devices don’t become weak links in an organization’s security posture.

3. Scalability. There’s no end in sight when it comes to the growth and expansion of IoT devices. Businesses need a sustainable and scalable approach to deploying devices beyond an initial set of sensors or cameras. As device quantities grow to the thousands or tens of thousands, implementation must be simple enough to be completed quickly and reliably by virtually any technician.

Wednesday, 26 June 2019

pyATS & Genie – Beneath the Surface

Today, we’ll take you behind the scenes and inspect the iceberg below the surface: how the framework and its libraries are built, and how you can take advantage of its APIs in Python.

Network Automation & Testing


pyATS | Genie was initially developed as the next-generation test infrastructure for Cisco Engineering. But wait – are we not talking about networking automation and NetDevOps?

We are. Upon closely inspecting and comparing test and network automation, we can identify a high degree of behavior overlap: they both programmatically drive network devices, only to different expectations. Whereas tests have passing criteria, network automation is built around business logic that acts and reacts on input conditions.

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Study Materials

In other words – they share the same network automation libraries.

For the past 20 years, Cisco has invested in automated testing. With pyATS | Genie released externally through DevNet, it allows everyone to make use of the great libraries and scripts that have been created as part of this ongoing engineering effort. So, while our engineers rigorously test the next platform/release, you may leverage the same libraries for your own network automation needs.

So, do I use pyATS or Genie?


In short, you use both. They are like two sides of the same NetDevOps coin.

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Study Materials

pyATS is the foundation of this ecosystem. As a powerful and highly-pluggable Python test framework, it is designed to provide maximum flexibility to developers, and standardizes the boilerplate requirements:

◈ define topologies and device/interconnects
◈ programmatically interact with various devices
◈ write, execute and report on test scripts

On the other hand, Genie is pyATS’s library and development-kit that focuses on building reusable network automation libraries and testcases. Built on top of pyATS, Genie features:

◈ parsers: converting/formatting command output into Pythonic data structures
◈ models: OS/platform agnostic Python classes that represents feature/protocol configuration state and operational status
◈ triggers & verifications: reusable pool of data-driven testcases

Together, pyATS | Genie provides you with all the tools & libraries necessary for network automation. By picking and choosing the right APIs and testcases, all you have to do is:

1. build your own business logic that makes use of the libraries
2. integrate it into the rest of your automation system, be it Jenkins, Ansible, ROBOT Framework or the likes.

“What do you call a pyATS developer that leverages Genie? A pyATS Genius.”

Parsers & Models


So far, you have seen that you can use Genie and parse CLI commands in shell, eg:

bash$ genie parse “show interfaces” --testbed-file testbed.yaml

Behind the scenes, this invokes Genie’s parsing capability:

1. connects to the testbed device
2. performs a search for the most-appropriate parser to use, based on input CLI and the connected device’s OS and platform information
3. invoke the parser to process the output
4. return the parsed Python dictionary (displayed as JSON in Genie CLI).

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Study Materials

Parsers are the lowest library layer in Genie. Each parser is responsible for:

1. issuing the right command on device, collecting output
2. convert/scrape/format the output, based on context, into a schema-controlled dictionary output.

The use of a schema with each parser ensures that each parser is self-describing, self-documenting, and self-testing.

The 1000+ parsers currently featured in Genie give you the basic ability to view, compare and analyze your device’s operational states in straight-up Python dictionary format. As awesome as that sounds, they do come with a few caveats:

◈ each parser processes only one command, and narrowly represents only a slice of the overall operational state of a feature/protocol.
◈ commands between different OS and platforms often differ, and as such, building business logic around parsers does not scale if you have a variety of devices in your network.

This is where models come in.

Genie models are the next-layer-up above parsers: YANG-inspired Python classes that implements a whole feature/protocol agnostically. They’re called YANG-inspired because the development team studies the YANG models of various platforms and crafted their own. Why? Because YANG is a machine-to-machine descriptor, and NETCONF XML comes with its own angle bracket tax…

Built to be human-friendly and engineered to works across different platforms and OSes, Genie models enables users to interact with network devices/protocols in a holistic, high-level and Pythonic fashion.

Take interface for example. To build the interface operational state model, our resident CCIE engineer, @tahigash3 studied YANG interface models across a variety of platforms, and came up with one top-level structure. With it, when you invoke Genie to learn “interface”, eg:

bash$ genie learn interface --testbed-file testbed.yaml

or if you are using Python directly:

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Study Materials

The engine automatically issues the following commands for each reference platform.

IOS-XE IOS-XR NXOS
show interfaces
show vrf detail
show ip interface
show ipv6 interface
show interface switchport
show etherchannel summary
show interfaces [intf]
accounting

IOS-XR
show interfaces detail
show vlan interface
show vrf all detail
show ipv4 vrf all interface
show ipv6 vrf all interface
show bundle
show interfaces [intf]
accounting

NXOS
show interface
show vrf all interface
show ip interface vrf all
show ipv6 interface vrf all
show interface switchport
show routing ipv6 vrf all
show routing vrf all

These command outputs are then parsed, using Genie parsers, and reconstructed together into the new data structure that represents the entire operational state of this device’s interfaces:

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Study Materials

In addition, each operational model is accompanied by a list of keys that are naturally “less interesting.”  When a diff is performed – the list ensures things like “uptime” and “keep-alive-sent” (e.g., data that is ever changing/incrementing and of minimal value) do no pollute the output, and that you can focus on just the things that matter.

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Study Materials

Besides operational status, this design around high-level, holistic model approach applies to device configuration as well: Genie conf models enable users to configure and unconfigure network devices just by setting Python object attributes. The rest is handled for you automatically.

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Study Materials

Because these models remain structurally consistent across different OS/platforms, automation built around Genie models are portable across your network: write them once and use them across different topologies and device types.

Can it get even better? Of course! Genie’s opens source library implementations are not limited to just Cisco devices. Whilst the team here is focused on building support for Cisco platforms (duh!), it is 100% possible to support 3rd party vendors and even competitor platforms through library extensions and plugins.

Sky’s the limit


With pyATS | Genie, you have free rein over your network automation. By harnessing the power of parsers and models, you can build true data-driven, portable and agnostic network automation that scales along with your network.

Tuesday, 25 June 2019

Secure, Interoperable Asset and Entitlement Management Platform Built on Smart Accounts

How can I get full visibility into all IT assets that I own and use?

How can I control and centralize access to my IT assets and entitlements?

How do I manage my IT assets and associated entitlements in a cost-effective way?

I already have an ITAM solution to manage all my procured assets from multiple vendors, can I integrate with Cisco for the investments we have made with Cisco?

How do I automate license deployments and management from our environment with Cisco’s cloud-based licensing platform?

These are questions that I hear from IT managers and administrators every day. That’s why I am happy to tell you about our secure interoperable asset and entitlement management platform —My Cisco Entitlements (MCE). Based on the principle of transparency, standards and security, My Cisco Entitlements provides a convenient platform for customers and partners to manage all their post-sales Cisco IT assets and entitlements.

Smart Accounts – The Foundation of MCE


Smart Accounts and ISO Compliant Application Programming Interfaces (APIs) provides the foundation for MCE. Cisco Smart Accounts were initially created as a time-saving way for customers to organize, use, and manage their Smart Licenses and associated entitlements. MCE extends the concept of Smart Accounts to manage all of Cisco licenses, devices, services, and subscriptions. For Cisco, this is the first time we connect the services and licensing worlds. It brings together license deployment information such as serial numbers with service product identifiers.

Benefits of MCE—Full Visibility, Centralized User Access, and Actionable Insights


When MCE connects services and licensing together, it provides benefits such as full visibility to all assets and entitlements, centralized user access management, and simplified install base reconciliation. Smart Account admins can control access on who views and manages assets.

The MCE dashboard summarizes the health of your products and services. It identifies risk areas such as upcoming Contract Expiration and Last Date of Support (LDoS) dates. For a specific insight, you drill down and view details. Then you can export and act based on this information.

By providing multiple interconnected views, MCE simplifies install base discovery and reconciliation. The “Devices” view captures all of the service coverage and related telemetry data. In addition, users can view all of the licenses deployed on that device enabling them to initiate device-led operations such as license rehosts.

We’ve normalized a “License” feature-based view across classic, smart and cloud licenses. No matter how you purchased the license – individual or bundled in an Enterprise Agreement – you will see it in one inventory.  You have the ability to see the service coverage or subscription, as well as all of the devices where that license has been deployed.

The “Service and Subscriptions” view captures all of your technical support contracts and software subscriptions in one inventory. You can also view links to the licenses or devices covered in any contract. Using various views and functionalities like global search, users can quickly search across device, licenses, services, and subscriptions to find all related data for their search term.

Automation and Scale with APIs


While we’ve built these experiences for online access, we recognize that automation of the tasks required to keep your records in sync with Cisco needs to scale. Customers and partners are increasingly adopting IT Asset Management Systems to automate tasks in maintaining compliance across vendors.  These tools manage entitlements from Enterprise Agreements, purchases, and other records to automatically determine and optimize assets and entitlement positions against discovered hardware and software.

To execute these tasks in a cost-effective way, MCE will allow all operations available online to be executed with ISO standards-based APIs.  Using the same secure Smart Account, customers and partners will be able to maintain their investments in multi-vendor IT Asset Management solutions without the redundant and manual operations to keep them in sync.

Cisco Study Materials, Cisco Guides, Cisco Learning, Cisco Certifications

MCE allows integration of all online functionalities to be executed with ISO standards-based APIs. MCE also provides service automation platforms for license generation, consumption, and reporting. In the future, we will offer MACDs (Move Add Change Delete) for service SLA management. Integration for Partner Support Services (PSS) to route cases to partners will also be available.

Cisco offers a number of Smart Account and Smart Licensing related APIs including Smart Account Search, Create and Delete, Validation of User Access, License Consumption, Usage, Alerts and Management, and Device Management.

MCE will offer APIs for:


◈ IEC/ISO 19770 Compliant XML for software, hardware and agreements
◈ Smart Account structure and user access management
◈ Asset Management (MACDs)
◈ Direct transaction processing such as Download SW, Case Open, License, SaaS Consumption Management

MCE delivers on our vision for secure, interoperable Asset and Entitlement Management with customers and partners. I look forward to sharing more in the future as we continue to evolve our capabilities.

Monday, 24 June 2019

Equinix Segment Routing-powered network delivers increased value to its customers

Cisco Study Materials, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Exam

Segment Routing 101

Segment Routing (SR) is a flexible and scalable way of performing source routing. The source chooses a path and encodes it in the packet header as an ordered list of segments.

Each segment is identified by the segment ID (SID) consisting of a flat 32-bit integer as illustrated in figure-1 below:

◈ Use case#1: single SID – 16050 – on R1 head-end to reach out to R5 as a loose path
◈ Use case#2 illustrates mix of loose and strict path to reach out to R5. The label stack on R1 can be interpreted to take shortest loose path to R4 (16040) and take strict path to R5

Figure-1: Segment routing source routing and inherent ECMP capabilities

Segment routing eliminates the need to maintain per-application and per-flow state in the network. Instead, it decodes the forwarding instructions provided in the packet header and forwards the packet accordingly.

Segment routing supports both MPLS (Multiprotocol Label Switching) and IPv6 data plane. It natively integrates with MPLS multi service capabilities, including Layer 2 & Layer 3 VPN (L3VPN), Virtual Private Wire Service (VPWS), Virtual Private LAN Service (VPLS), and Ethernet VPN (EVPN).

Why is Equinix adopting Segment Routing?


Segment routing offers stateless service policies which simplify network and provides fine-grained control over applications for guaranteeing stringent SLAs to meet customer mission critical application requirements. It provides native tools built into the technology DNA for simplified service creation which enhances end-user experience. Faster response time via automated service creation can be delivered with the additional ability to custom fit transport to application needs which is critically important for new evolving technology adoption. It also provides built-in network resiliency with tens of millisecond convergence across any network topology.

Moreover, Segment Routing utilizes the network bandwidth more effectively than traditional MPLS networks and offers lower latency.

In summary, Segment Routing drives the next level of network simplification – at the control and data plane level – enabling operators to implement complex use cases without the need to implement and operate complex traffic engineering techniques such as MPLS RSVP TE. It significantly contributes to reducing both CapEx and OpEx.

What are the benefits for Equinix customers?


The future of networking is moving towards “Intent based networking”. Segment Routing is a foundational building block to make network infrastructures intent ready as a SDN controller can translate application intent into a Segment Routing stateless service policy that can be dynamically instantiated to carve out a virtually isolated path based on specific application requirements.

As the world’s global data center interconnection leader, Equinix is constantly innovating on behalf of its customers to help them grow their businesses. At the core of the Equinix interconnection value proposition is a global network infrastructure that offers multiple network services to both Service Providers and Enterprises alike. To offer new and differentiated value-added services and to provide a second-to-none customer experience, Equinix is implementing Segment Routing in their next-generation network infrastructure

Use case 1 – Offering legacy TDM services over a packet switching network Infrastructure

This use case includes migration of TDM services or offering new low-cost TDM services over a packet-based network.  From an end-user perspective, there should not be any differences between traditional and packet-based TDM services. User should be able to subscribe to protected and unprotected services as currently being offered with traditional TDM services.

Segment routing technology with TI-LFA support brings inherent link and node protection with 50ms convergence without a need to enable complex protocols. Segment routing being packet optimized will utilize equal cost path towards the destination without any additional operational overheads and stateless service policies will minimize control plane states with complete control in  operators hands on how to define the service.

Service requirement and design decisions:

Figure 2: Traditional TDM service migration over IP transport network

Implementing TDM services over a packet-based transport network with segment routing stateless traffic-engineered service policy eliminates the need to deploy complex state full RSVP-TE control plane which requires more CPU and memory resources to maintain per service policy soft states (hop by hop path and reservation messages) on every networking device along the path. It is also hard to debug complete OSI stack from layer 1 to layer 7 in production network compared to layer 1 to 3 stack in segment routing implementation.

Use case 2 – Offering Application SLA based Path selection

5G roll-out will drive significant investment in the network infrastructure to support new requirements such as network slicing – specific slices include encrypted, low latency and high bandwidth slices. It will allow Service Providers to offer new, differentiated services and create new revenue streams.

The network infrastructure should be able to offer such complex services without the need to implement complex technologies to ease day to day operational overhead.

Flexible Algorithm makes Segment routing traffic engineering even more agile. On top of current TE capabilities – stateless service policies, on-demand policy generation and automated steering -Flexible Algorithm enables multiple optimizations of the same physical network infrastructure along various dimensions called slices –  for instance, slice 1 can be optimized for encrypted, slice-2 can be optimized for low-latency and slice 3 can be optimized for high bandwidth along with disjoint paths via two distinct planes using anycast capabilities. Application to slice mappings can be done using stateless service policies.

Service requirements and Design decisions:

Figure-3: Network slicing and service policy steering traffic to network slice

Figure 3 compares network slicing across legacy MPLS traffic engineered and emerging segment routing technology. Two obvious differences clearly stand out:

Cisco Study Materials, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials, Cisco Exam
■ Segment routing being packet optimized compared to RSVP-TE being circuit optimized, will inherently use ECMP path without the need to create separate policies for every possible ECMP path along the way to destination – which makes provisioning tool development and troubleshooting more simple resulting into OpEx savings.

■ Better use of bandwidth across the network with simple configuration can help reduce CapEx for the price/bps on expensive network equipment.

The inherent difference between the two technologies is provisioning simplicity and optimal use of network resources which in turn simplifies network operations, topology, and visibility and troubleshooting with reduced CAPEX and OPEX.

Segment Routing is here to stay as upcoming 5G services will drive the need for low latency, highly-resilient, and bandwidth hungry differentiated services over a single physical infrastructure to meet application SLAs. To speed up 5G services’ adoption, Service Providers need to carefully choose technologies that can enable customers to provision differentiated services in real time and at scale. Segment Routing is undoubtedly one of these technologies.

Sunday, 23 June 2019

Make Influencer Marketing a Part of Your B2B Mix with These 5 Philosophies

Cisco Tutorials and Materials, Cisco Study Materials, Cisco Guides
Influencer marketing is a well-established strategy in the B2C sphere. That’s a given. We’ve all witnessed the success consumer-facing brands have had when a stylized product image is placed in an influencers’ Instagram feed.

But if you think influencer marketing isn’t a viable strategy for B2B, think again. Increasingly, B2B marketers are experimenting with influencer marketing, but—truthfully—they’ve been doing it for years. Think of all the customers that have contributed perspectives to your case studies or speaking panels. Think of the brand advocates who have contributed to a white paper or co-presented in a webinar.

For years, B2B marketers have trusted and benefitted form the core principle of influencer marketing: an independent, trusted third-party has a great and genuine ability to connect with your audience in a meaningful way.

Shifts in traditional marketing tactics will only continue to make influencer marketing more important. As paid advertising becomes more expensive, and, in some cases, less effective, companies of all shapes and sizes are turning to earned exposure through influencer marketing.

And I would argue influencer marketing is more important for B2B than B2C. The average purchase size in B2B typically dwarfs that of B2C. Thus, there is greater risk associated with B2B decision making, and when risk is higher customers seek to avoid mistakes by doing their homework. The impact of referrals and word of mouth are more critical to your organization’s success: Ninety-one percent of B2B purchases are at least influenced by word of mouth.

While the tenets of influencer marketing work similarly for B2B and B2C, the strategy takes a slightly different form in B2B. Here are the differences you need to keep in mind:

1. Expand Your Definition.


When most people think of influencer marketing, they think of Instagram. Yes, there are influencers on Instagram, but they are also on YouTube. There are influential bloggers and vloggers. Influencers run private Facebook and LinkedIn communities. They are your current customers. They are your partners, and they can be your employees. The truth is they are everywhere.

Influence does not correlate to a particular social network. Influence is about the ability to create a community. Thus, an influencer is a person who has built an engaged community through content that aligns around ideas, questions, and goals.

2. Stretch Your Time Horizon


Because B2B purchase decisions are often more nuanced and comprehensive than consumer purchases, the impact of B2B influencer marketing takes longer to root. Further, because most B2B purchases involve a number of decision makers, it will take longer for the impact of B2B influencer marketing to touch those people. Incidentally, this is why, we should all use more influencers in cooperation with account-based marketing.

At Convince & Convert we estimate you shouldn’t expect results from a B2B influencer marketing program for at least six months, and you should seek to work with B2B influencers for a year at a time. This differs a lot from B2C influencer programs, which can be as short as a month in duration.

3. Focus on More than Social Strength


Social media reach is often used as a key measure of influence, but it isn’t the only way to gauge influencer marketing strength. Some of the most powerful influencers in the world are not active at all in social media.

When creating an influencer marketing program, consider people who may not be social mavens but are respected thinkers, authors, speakers, podcasters, and researchers. Using social reach as the primary criteria makes it easier and faster find influencers, but doing that alone will miss influential people your customers respect.

4. Emphasize Co-Creation


B2B influencers aren’t supposed to repeat your talking points or retweet your account word for word. If that’s the game plan, just buy some ads. The more influencers have a chance to put their own take on the benefits of your products and services, the more impactful they are on your behalf.

The best way to make a mark with an influencer is to find the right people and educate them. Clearly explain what you are looking to accomplish and why it’s important. Then, listen. Give your influencers an opportunity to come up with ideas on how to create interesting content, how to engage with key customers, how to enable your sales team, and more.

5. Be Acutely-Aware of Conflicts


B2B influencer marketing programs are more likely to have circumstances where a proposed influencer cannot participate, or at least can’t participate in the way your business believes is ideal, due to existing relationships, company partnerships, or job restrictions.

Cisco Tutorials and Materials, Cisco Study Materials, Cisco Guides
Many B2C influencers make all or part of their living recommending products. This isn’t the case with B2B influencers. In the B2B sphere, influencers have a day job and are influential in part because of that position. That day job is typically a reason a B2B influencer yields influence.

This is yet another reason why you need to give yourself enough time to find and activate B2B influencer marketing programs. Sixty days is the minimum lead time necessary to research and approach influencers and determine what type of program is feasible without the risk of conflict.

While the principles of influencer marketing are similar in B2B and B2C, the practice of this marketing discipline is not. For a B2B marketer, the programs, approaches, timeline and mindset are all distinctive to your customer and their journey. Understanding how to put those differences into practice can help you drive greater visibility and credibility and convert trust into engagement.

Saturday, 22 June 2019

Wi-Fi’s New 6 GHz Spectrum is a New Frontier

The world’s wireless systems are getting huge upgrades this year and next: 5G cellular is beginning its rollout, with the promise of much faster speeds; and Wi-Fi is getting a big upgrade too, with the release of Wi-Fi 6 devices that will give us not just better speed, but better battery life and reliability. There’s one thing that Wi-Fi really needs, though, so we can take the best advantage of its new promise. More radio-frequency spectrum.

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials

In 2020, we will finally get it: A big chunk of new wireless spectrum in the 6 Gigahertz (GHz) band – potentially from 5.925 GHz up to 7.125 GHz.

When Wi-Fi was first developed, it used spectrum in the 2.4 GHz range. From the start, the air was crowded. 2.4 GHz was, and is, used by many other device types, including cordless phones, Bluetooth devices, and some IoT protocols.

In 1997, parts of the 5 GHz spectrum opened up, which the newer standards like 802.11n (now called Wi-Fi 4) can use, and which 802.11ac (Wi-Fi 5) must use. Access to 5 GHz spectrum was last expanded in 2003, with a new subset of the band that can only be used by devices that dynamically avoid previous allocations for 5 GHz radar.

Since then, the use of Wi-Fi has grown dramatically, taking on more of the global data traffic (which is also growing). All that traffic has had to crowd into those frequency bands. There’s not enough capacity in them for future needs.

Please note: In this story, we discuss 5 GHz and 6 GHz, which are frequency bands, as well as the wireless standards 5G and Wi-Fi 6. The frequency ranges may sound like they are related to the wireless standards, but the terminology similarity is a coincidence.

Cisco Certifications, Cisco Guides, Cisco Learning, Cisco Tutorials and Materials

By 2022, Wi-Fi and mobile devices will account for 79 percent of Internet traffic.

In 2020, for the first time in 17 years, we expect that Wi-Fi will get additional airspace. While we don’t know all the conditions that regulators will require for use of the 6 GHz band, we do expect access to a  broad swath of spectrum.  More importantly, that spectrum will, at least at first, be uncrowded by legacy devices, and will contain more contiguous, uninterrupted ranges of spectrum than any of the existing Wi-Fi bands.

Here’s why that matters.

A Closed Course 


I’ve written previously about the benefits coming to us in Wi-Fi 6 (Wi-Fi 6 Powers Real-World Wireless Enterprise Applications). The new version of Wi-Fi gets us better performance and improved battery life, for starters. But the full advantages of Wi-Fi 6 can only be realized when Wi-Fi 6 equipment isn’t trying to work around other radio standards. When a Wi-Fi 6 radio is sharing spectrum with Wi-Fi 5 (or other) radios, it may find it has to compete with those transmissions for spectrum. In particular, it can’t take full advantage of the protocols for scheduled transmitting and receiving, which could impact performance and battery life.

When a Wi-Fi 6 radio is sharing spectrum with Wi-Fi 5 (or other) radios, it may find it has to compete with nearby transmissions for spectrum, lowering performance and efficiency. In Wi-Fi 6, an access point (AP) can schedule how the devices it’s communicating with can use the spectrum millisecond-by-millisecond. The AP can also schedule multiple devices at the same time by aggregating devices into different frequencies. Such scheduling and aggregation is one of the reasons Wi-Fi 6 can offer such improved performance.

Furthermore, legacy Wi-Fi 4 and Wi-Fi 5 devices will be not be allowed in the 6 GHz band, so that Wi-Fi 6 radios on this frequency will not have to compensate for other Wi-Fi radios barging into their transmissions. The 6 GHz band will allow Wi-Fi 6 to meet the potential designed into it.

Wide Lanes 


Wi-Fi spectrum, in all frequency ranges, is broken up into channels. When a radio uses Wi-Fi, it picks a channel to transmit on, and the energy it puts into adjacent channels is limited by design so it doesn’t bleed into neighboring channels. Current channels in the 2.4 and 5 GHz range are mostly 20 MHz or 40 MHz wide, with a very few that use 80 MHz or even 160 MHz. The wider the channels (literally, the bandwidth), the faster the data throughput can be. There aren’t enough wide-band channels on the 2.4 and 5 GHz frequencies to support wireless network growth.

Wi-Fi 6 at 6 GHz gets more channels that are 160 GHz wide, which will allow many more simultaneous users to transmit and receive at the highest possible speed.

The 5G Imperative 


The new 6 GHz spectrum is valuable not just to Wi-Fi, so we hope that the cellular and local wireless communities can cooperate on ways to share these frequencies. But in the shorter term, when 6 GHz frequencies become available to Wi-Fi, this expansion will also serve the cellular business. In fact, 5G cellular will need Wi-Fi to have this new capacity.

As more users take up 5G cellular and become accustomed to even higher speeds when they are mobile and outdoors, they will expect that experience to seamlessly transfer to their indoor spaces. The current 5 GHz Wi-Fi spectrum will strain to carry that load. Cellular carriers need solid solutions to take care of their customers when they move into spaces not well-covered by their outdoor networks.

With Wi-Fi getting additional capacity, the likelihood of building seamless hand-off experiences goes up. This will improve satisfaction and productivity for all wireless users no matter what networks they use.

We also expect that the cellular carriers will want to take full advantage of OpenRoaming to make the wireless experience as seamless as possible.

Bonus: Location Accuracy


Wi-Fi can be used for more than data transfer. It can also geolocate devices using it – an important capability since satellite-based GPS doesn’t generally work well in the in-building domain of Wi-Fi.

The 6 GHz band will allow for greater location accuracy than other Wi-Fi bands, because location accuracy is proportional to channel width, and as we discussed above, almost all the 6 GHz channels are wider than channel widths now used in 2.4 and 5 GHz.

Improved and reliable location accuracy can lead to entirely new solutions and business benefits. Already our own Cisco DNA Spaces is providing new analytics that go straight to the bottom line for business.

When, Not If


While we don’t know precisely which parts of the 6 GHz spectrum will be opened up to Wi-Fi 6, nor exactly when, we are highly confident that sometime in 2020 we’ll know how much of that frequency will become available. The proposal on the table as I write this is for one half of the 6 GHz band to be freed up in the US, with more to come a year following; and forabout 500 megahertz of the range to open up in Europe.

We are gratified to see the various standard-setting and regulatory agencies we work with moving in a direction that will serve the needs of business and users, and keep expanding the scope of what we can achieve with wireless networking.