Are you interested in becoming a Cisco Meraki Solutions Engineer? If so, you must pass the Engineering Cisco Meraki Solutions (ECMS 500-220) exam. This exam tests a candidate's knowledge and skills for troubleshooting, monitoring, implementing, designing, and cloud management. In this article, we'll overview the exam, share some exam tips, and discuss the benefits of taking a practice exam.
Overview of the Cisco 500-220 Exam
The ECMS 500-220 exam is a 90-minute exam that consists of 55-65 multiple-choice questions. The exam is designed to test your knowledge and skills in the following areas:
Cisco Meraki Cloud Management (15%)
Design (30%)
Implementation (25%)
Monitoring and Troubleshooting (30%)
Pearson VUE administers the exam, which can be taken online or at a testing center. The cost of the exam is $300.
Cisco ECMS 500-220 Exam Tips
Here are some tips to help you prepare for and pass the ECMS 500-220 exam:
Understand the Exam Objectives: Make sure you understand the exam objectives before you begin studying. The Cisco website provides a detailed exam blueprint that outlines the topics covered on the exam.
Study the Official Study Material: Cisco offers an official ECMS 500-220 course that covers all the topics on the exam. This course includes hands-on labs and interactive activities to help you better understand the material.
Practice with Meraki Equipment: If possible, get your hands on it and practice configuring and managing it. This will help you gain practical experience and prepare you for the hands-on labs on the exam.
Take ECMS 500-220 Practice Exam: Taking ECMS 500-220 practice exams is a great way to assess your knowledge and identify areas to focus your study. Cisco offers an official practice exam for the ECMS 500-220 exam and other third-party practice exams.
Manage Your Time: The ECMS 500-220 exam is 90 minutes long, so you must manage your time effectively. Read the questions carefully and answer them as quickly and accurately as possible.
Benefits of Taking a Cisco ECMS 500-220 Practice Exam
Taking a practice exam can provide several benefits, including:
Identifying Knowledge Gaps: Practice exams can help you identify areas where you must focus your study. This can help you create a more targeted study plan and maximize your time.
Familiarizing Yourself with the Exam Format: Practice exams can help you get familiar with the exam format, including the types of questions you can expect and the time constraints you'll be under.
Reducing Exam Anxiety: A practice exam can help minimize exam anxiety by providing a sense of what to expect on exam day. This can help you feel more confident and relaxed during the actual exam.
Improving Test Scores: Studies have shown that taking practice exams can improve test scores by up to 10%. This is because practice exams help reinforce the material and provide an opportunity to practice applying it in a test-taking environment.
Benefits of Passing Cisco ECMS 500-220 Exam
Passing the ECMS 500-220 exam can provide several benefits, including:
Increased Job Opportunities: Passing the ECMS 500-220 exam can open new Cisco Meraki Solutions Engineering job opportunities. Many employers require certification as a prerequisite for employment, so having this certification can give you a competitive edge over other job applicants.
Improved Career Growth: Becoming a Cisco Meraki Solutions Engineer can provide career growth and advancement opportunities. You can expect to be involved in challenging and exciting projects and continue to learn and grow your skills throughout your career.
Enhanced Professional Credibility: Certification proves your knowledge and skills to potential clients and employers. It can improve your professional credibility and increase your value in the eyes of your clients and colleagues.
Increased Earning Potential: With certification, you can earn a higher salary than your non-certified counterparts. According to PayScale, the average salary for a Cisco Meraki Solutions Engineer is $97,000 per year.
Conclusion
The ECMS 500-220 exam is essential to becoming a successful Cisco Meraki Solutions Engineer. By understanding the exam objectives, studying the official material, practicing with Meraki equipment, taking practice exams, and managing your time effectively, you can confidently pass the exam. Additionally, passing the exam can provide many benefits, including increased job opportunities, career growth, professional credibility, and earning potential. So, if you're interested in pursuing a career in Cisco Meraki Solutions Engineering, prepare for the ECMS 500-220 exam today!
Over the years, advancements in technology and the endless waves of new innovations have created an unintended problem for most organizations today—overcomplexity. 53% of senior decision-makers say their IT environment is more complex than it was just two years ago.
I explained how Secure Access Service Edge (SASE) and the convergence of networking and security are key to reducing operational complexity. Now, more than ever, organizations need an efficient way to securely connect distributed workforces and build a consistent operational model that extends from on-premises to the cloud, bridging a hyper-dispersed landscape and creating secure and seamless experiences anywhere.
Answering that call are two general SASE approaches that may deliver those desired outcomes. The first, a “best of breed” solution, is comprised of separate networking (SD-WAN) and security service edge (SSE) products, typically from multiple vendors, which inherently will lack a consistent operational model, leading to a more fragmented experience given the increased integration required to produce a complete SASE solution. This may also lead to a solution that is less secure.
The second approach is a unified SASE solution that delivers networking and security components as a simplified, turnkey cloud service featuring unified management from a single dashboard. A well-designed SASE solution removes complexity by providing centralized management with intelligent and consistent distributed enforcement, along with controls and visibility across endpoints, enterprise edge, and cloud edge to deliver a more secure end-to-end solution that further enhances the end-user experience. Unified SASE embraces a platform approach, seamlessly converging networking and security technologies into one experience that makes management easy.
Acknowledging the importance of a unified, single-vendor approach, Gartner predicts that… “By 2025, 50% of new SD-WAN purchases will be part of a single-vendor SASE offering, up from 10% in 2022.”
Converging the Best of Networking with Security on a Single Platform
Cisco+ Secure Connect is Cisco’s premier unified solution that provides a blueprint for SASE made easy. This unified SASE solution is built on a converged cloud-first platform that connects Cisco’s industry-leading networking and security technology and delivers several key outcomes:
◉ Creates a streamlined IT management experience, which in turn helps deliver a more seamless experience for end users so they can access the resources they need, wherever and whenever they need them
◉ Simplifies the management of networking and security domains within a single dashboard, providing greater visibility and insight to ITand allowing them to proactively stay on top of threats and vulnerabilities across the network, ensuring greater resiliency and security
◉ Harmonizes the networking and security domains by interconnecting everything and providing security everywhere to build a unified SASE fabric, removing complexity and creating a simple, consistent operating model
Figure 1. Cisco+ Secure Connect Dashboard
Every organization has an installed technology base, and there may be a temptation to simply add the missing SASE functionalities to whatever currently exists. However, it’s important to note that SASE is a long-term strategic choice and simply deploying all the components of a SASE model without a high level of integration does not constitute a fully functional SASE solution and will not deliver the desired outcomes. For this reason, unified SASE is the simplest and easiest path to realizing true SASE benefits that “stick” – ultimately, delivering better experiences.
Cisco is one of the world's leading technology companies that offer numerous certifications to professionals who aspire to establish a career in the networking domain. Cisco certifications validate an individual's skills and expertise in designing, implementing, and managing complex network infrastructure. One of the popular certifications offered by Cisco is the Designing Cisco Enterprise Wireless Networks 300-425 ENWLSD exam, designed for network professionals seeking to earn the CCNP Enterprise certification. This exam validates their skills in implementing and troubleshooting advanced routing technologies and services. This article will discuss the best study resources for preparing for the Cisco 300-425 exam and the importance of practice tests in ensuring exam success.
Overview of the Cisco 300-425 ENWLSD Certification Exam
The Cisco 300-425 certification exam, also known as the Designing Cisco Enterprise Wireless Networks (300-425 ENWLSD) exam, tests your knowledge and skills in designing Cisco wireless networks. This exam is part of the Cisco Certified Specialist - Enterprise Wireless Design certification track. It is intended for IT professionals who want to validate their skills in implementing Cisco wireless network solutions.
The Cisco 300-425 ENWLSD certification exam consists of 55-65 questions you must answer in 90 minutes. The exam measures your proficiency in the following topics:
Passing this exam requires thorough preparation, and you must deeply understand the exam topics and objectives. The next section of this article will discuss some of the best study resources for the Cisco 300-425 ENWLSD certification exam.
Study Resources for Cisco 300-425 ENWLSD Certification Exam
Cisco Learning Network
The Cisco Learning Network is a comprehensive learning platform that provides various resources for the Cisco 300-425 certification exam. This platform offers self-paced learning modules, practice exams, and study groups to help you prepare for the exam. You can access the Cisco Learning Network for free, and it is an excellent resource for anyone preparing for the Cisco 300-425 ENWLSD certification exam.
Cisco Press Books
Cisco Press is a leading publisher of Cisco certification study materials. They offer a variety of books, eBooks, and video courses that cover different topics related to Cisco enterprise wireless networks. These materials help you learn quickly and reinforce your understanding of the exam concepts.
Instructor-Led Training
If you prefer classroom-style learning, instructor-led training is an excellent option. Cisco offers instructor-led training course that cover the exam objectives in-depth. These courses are led by certified Cisco instructors with real-world experience designing and implementing Cisco wireless networks.
Cisco 300-425 ENWLSD Practice Tests
Practice tests are an excellent way to assess your knowledge and understanding of the exam objectives. They help you identify your weak areas and enable you to focus on them in your exam preparation. Practice tests also help you familiarize yourself with the exam format and structure, making you more comfortable during the exam.
Importance of Practice Tests in Cisco 300-425 ENWLSD Exam Preparation
Practice tests are crucial to any exam preparation strategy, including the Cisco 300-425 ENWLSD exam. Here are some of the reasons why practice tests are essential in your exam preparation:
1. Identifying Knowledge Gaps
Practice tests help you identify your knowledge gaps and weak areas. By taking practice tests, you can assess your understanding of the exam objectives and identify areas where you need to focus more in your exam preparation.
2. Time Management
Time management is critical during the actual exam. Practice tests help you familiarize yourself with the exam format and structure, enabling you to manage your time effectively during the exam.
3. Reducing Exam Anxiety
Exam anxiety is a common issue faced by many candidates during the exam. By taking practice tests, you can get familiar with the exam format and structure, making you more comfortable and confident during the exam.
4. Reinforcing Concepts
Practice tests help reinforce your understanding of the exam concepts. By taking practice tests, you can apply the concepts you have learned in real-world scenarios, helping you gain hands-on experience designing and implementing Cisco wireless networks.
Try Free Cisco 300-425 ENWLSD Exam Questions Now!
Tips for Passing the Cisco 300-425 Certification Exam
Understand the Exam Topics and Objectives
Create a Study Plan and Stick to It
Use Multiple Study Resources
Take Practice Tests
Join Study Groups and Forums
If you are an aspiring CCNP Enterprise professional, taking the necessary steps to prepare for and pass the Cisco 300-425 certification exam is essential. The CCNP Enterprise certification is a highly respected and sought-after credential in the IT industry, and it can help you advance your career and open up new opportunities.
Conclusion
Preparing for the Cisco 300-425 ENWLSD exam requires adequate preparation and dedication. By using the study resources, we have discussed in this article and taking practice tests; you can increase your chances of passing the exam on your first attempt. Remember to identify your knowledge gaps, manage your time effectively, reduce exam anxiety, and reinforce your understanding of the exam concepts.
With the increasing complexity of Enterprise networks, there is a need for self-correcting and self-healing mechanisms that learn, predict, and plan. Cisco is announcing our newest SD-WAN innovation with Predictive Path Recommendation (PPR) powered by Cisco ThousandEyes WAN Insights. This is a significant capability to simplify network operations by leveraging recommendations from Cisco’s Predictive Networks. Predictive Path Recommendations provide proactive guidance for maintaining network stability and improving the performance of critical Application Groups distributed across the SD-WAN fabric. IT defines applications that require a specific SLA into groups so that PPR can predict which paths will meet those criteria.
Cisco SD-WAN provides IT with scalable, secure, cloud-managed WAN fabrics with extensive capabilities for visibility and troubleshooting of day-to-day network operations. The simplicity of management and exceptional Application Quality of Experience (AQE) are the key driving factors for all innovations underpinning Cisco SD-WAN.
AQE is achieved by constantly monitoring application path metrics and making intelligent choices among all the available paths. Cisco SD-WAN leverages existing capabilities of Application-Aware Routing (AAR) to adapt to unexpected degradation or outages by switching to the most optimal path. This ability to react quickly and automatically to changes in network KPIs provides an optimal Application Experience.
PPR, in combination with AAR, is a powerful tool that helps organizations optimize the performance of their wide area networks. One of the key benefits of PPR is its ability to generate long-term recommendations for network optimization. Rather than simply reacting to network issues as they arise, PPR takes a proactive approach, continuously monitoring the network and issuing recommendations whenever a better path is available. This helps to ensure sustained improvement over a long period of time. Figure 1 illustrates the three phases of the Predictive Path Recommendation cycle.
Figure 1: Three phases of the Predictive Path Recommendation cycle.
SD-WAN continuously monitors application behavior in relation to characteristics of all available paths within the WAN fabric and then generates long-term recommendations for paths that will reduce the probability of experiencing an SLA violation.
As changes to the WAN occur, the predictive models evaluate historical path metrics and usage to provide an early-detection system by warning of potential SLA violations before they occur and providing recommendations for alternate network paths per Application Group.
Network Admins/Operators can leverage the visualizations that are available in Cisco ThousandEyes and SD-WAN to view, monitor, and validate the effectiveness of the predictive model recommendations.
Operators select which policy changes that are recommended by the predictive models to apply in the SD-WAN fabric.
Workflow-Review & Application of Recommendations
PPR generates recommendations on a per Application Group per Site basis and these are available to visualize, explore and review before applying policy changes to the Network. From Cisco SD-WAN vManage UI, administrators can launch the Predictive Networks tab to view and explore all available recommendations.
Figure 2: Cisco SD-WAN vManage Predictive Path Recommendations tab with site map.
Figure 3: Cisco SD-WAN vManage PPR tab with Card-View
SD-WAN administrators can find additional insights into the historical performance of the current path versus recommended path in terms of path quality and impacted users specific to an Application Group at a specific site. In addition, the aggregated metrics for the entire site are also available, which helps Admins identify circuits and paths which are problematic. This view is helpful in understanding the impact of policy change based on model recommendations.
Figure 4: Cisco SD-WAN vManage Predictive Path Recommendation view for a site
Path and Quality of Service (QoS) details for path endpoints help admins verify the path recommendations. The visualization helps compare and correlate the historical Network KPI information presented with path quality variations, number of users, and application experience over time.
The Future of Connectivity Relies on Self-Healing Networks
Integrating Cisco ThousandEyes Predictive Path Recommendation with Cisco SD-WAN vManage provides IT with a proactive solution with actionable recommendations to reduce disruptions in network fabric while simplifying network operations. The predictive solution helps to improve the application experience by avoiding network degradation before it happens. It enables operations personnel to work more efficiently and to focus on strategic activities rather than reactive triage. Moreover, Predictive Path Recommendation provides the foundation for intelligent closed-loop network automation.
The 300-410 ENARSI exam is required to obtain the CCNP Enterprise certification and also qualifies individuals for the Cisco Certified Specialist - Enterprise Advanced Infrastructure Implementation certification. It evaluates one's ability to implement and resolve complex issues related to advanced routing technologies and services such as VPN, Layer 3, infrastructure services, infrastructure security, and infrastructure automation.
The Cisco 300-410 exam lasts 1.5 hours and comprises 55-65 questions. It is available in both English and Japanese languages. Individuals can register for the exam through Pearson VUE, and the standard fee for taking the test is $300. They can take the exam either at a testing center or online.
Ways to Prepare for Cisco 300-410 ENARSI Exam
Sufficient preparation is necessary for the Cisco 300-410 ENARSI exam; individuals should approach it seriously. There are various study materials available to specialists, and below are some practical options they can explore:
1. Understand Cisco 300-410 ENARSI Exam Syllabus
The main priority for candidates is to become familiar with the topics covered in the Cisco 300-410 exam. They can achieve this by using the blueprint on the official website, which provides an overview of the domains tested. Using this information, candidates can identify their strengths and weaknesses and tailor their preparation process accordingly to focus on specific areas.
2. Enroll in a Training Course
Professionals can use the official training course to enhance their abilities in working with enterprise networks, implementing, configuring, and resolving issues. This training opportunity encompasses advanced infrastructure technologies and routing. More information about this course can be found on the Cisco website.
3. Learn from a Study Guide
The official study guide may be helpful for individuals who prefer to prepare for the certification exam independently and manage their own study time. Cisco Press's Official Cert Guide aims to help you study, prepare, and practice for the exam, to ensure you are fully ready for your certification test.
4. Try Out a Cisco 300-410 ENARSI Practice Test
Candidates may use Cisco 300-410 practice tests to become familiar with the question patterns of the actual exam beforehand. This is also an excellent opportunity to refine the skillset needed for the Cisco ENARSI exam.
5. Learn from Experts
Interacting with other test-takers aiming to excel in different exams and obtaining relevant certifications from various parts of the world is crucial. These individuals may have their tips and strategies for preparation, which can be beneficial to learn from through communication.
Key Motives to Pass the Cisco 300-410 Certification Exam
Obtaining the CCNP Enterprise certification by passing the 300-410 ENARSI and 350-401 ENCOR exams can provide numerous advantages. Here are how you can benefit:
It confirms your skills. Successfully passing the Cisco 300-410 exam indicates that you possess the essential competencies and understanding to implement and troubleshoot advanced routing technologies and services. Furthermore, the certification you receive proves to hire managers that you can perform intricate tasks. Many organizations are seeking individuals with these proficiencies.
It will broaden your knowledge. Passing the Cisco 300-410 ENARSI exam is not only about obtaining the certification but also an excellent opportunity to enhance your expertise in implementing and troubleshooting advanced technologies and services. As you undergo intensive preparation, you will gain a wealth of knowledge and acquire valuable skills.
Earning the Cisco 300-410 certification will increase your employment prospects. Individuals who hold Cisco certification are often more attractive to employers than those who do not have it. With CCNP Enterprise, you will have an advantage over job seekers who lack this certification, and employers may prefer to hire you for available positions.
The certification can bring a feeling of accomplishment, which is personally satisfying. The CCNP Enterprise certification can bring about a sense of personal contentment and accomplishment many aspire to attain. It can enhance the self-assurance of network administrators and IT professionals in their competence to create, diagnose, and implement networks and showcase their proficiency in this area.
Conclusion
If you aspire to progress in IT, consider taking the 300-410 ENARSI exam and earning a professional certification. Nonetheless, it's vital to adequately prepare for this test by using various resources, including the official training course, certification guidebook, practice tests, and more, and choosing the ones that align with your requirements. Once you've finished preparing, you can concentrate and confidently take the exam.
Cisco Modeling Labs (CML) 2.5 arrives with annotations, a new feature for all CML license levels. When learning and designing, annotations let you get the most out of your labs. Annotations allow you to include all the documentation on how parts of the network work, details about your learning objectives and next steps, or ways the network elements fit together. In short, the annotations feature in CML 2.5 lets you make your network yours. Here’s how it works.
Add context with annotations in CML
Annotations allow you to provide additional context to your lab topology and organize the elements in a helpful, meaningful way. For example, you can use annotations to show routing, IP addressing, and VLAN information, as shown below:
Annotations in CML are persistent. This means annotations will be included in the lab definition if exported, allowing you to share your annotated labs with others.
A grid background and node/annotation grid snapping are enabled by default. Snapping will automatically snap nodes and annotations to ensure they are properly aligned when drawing or moving them. You can turn off snapping for a lab by unchecking the snap to grid option in the toolbar settings. You can also temporarily disable snapping by holding the Alt key when you add or move a node/annotation.
Additionally, annotations support transparency and layering, allowing you to stack annotations.
How to add annotations to labs in CML 2.5
You can add annotations to labs in the workbench via one of the four annotation tools in the toolbar.
There is one tool for each type of annotation:
◉ Rectangle
◉ Ellipsis
◉ Text
◉ Line
For all annotation types except text, you can add the annotations by first selecting the tool. Then click and hold the mouse where you want the annotation to start, and drag it to where you want it to end. Releasing the mouse will create the annotation, and you will see a sidebar with other properties you can change for the annotation.
The process of adding a text annotation is similar, starting with selecting the tool. Next, click and release where you want the text. Finally, the sidebar will open, allowing you to enter the text you wish to use.
New options in toolbar settings
Click the gear icon in the toolbar to open the canvas settings menu, which provides these new options for CML 2.5:
1. Toggles the grid on/off
2. Turns node/annotation snapping on/off
3. Turns annotations off, hiding the drawn annotations and annotation tools
NOTE: You can temporarily disable the snap-to-grid option by holding the Alt key (or Option key on a Mac) when moving or resizing an annotation/node. This lets you keep snapping enabled while precisely placing an annotation/node.
Edit annotations
Selecting an annotation will toggle the visibility of the resize handles for the currently selected annotation. Additionally, a sidebar will be opened, allowing you to edit the annotation properties further
1. Resize Handles
2. Sidebar
Future annotations in CML
The CML development team is currently exploring adding an image annotation type in a future release to allow the addition of images inside a topology.
In Part 1 (Something Old) we looked at basic changes to the physical layer provided by wave 1 of 801.11ax, how these changes can affect performance, and how OFDMA enables the optimal use of the 6GHz spectrum. In this second article, we’ll explore “something new:” the challenges of discovery in 6GHz, new methods used for solving this, and how these new methods open 6GHz for many different use cases.
Is There Anybody Out There?
In previous generations, Wi-Fi clients would scan channels and send unsolicited probe requests to discover access points (APs). Scanning channels can be a timely process as beacons are only broadcast every 102400us so the client must dwell long enough to detect the beacon. At 6GHz this is 102400us x 59 channels (there are 59 20MHz channels in the new 6GHz spectrum) which is over 6 seconds. For the client, this loss in time represents a disruption in communication. Creating intolerable latency in voice and lost opportunity to hundreds of megabytes of data every time the client decides to scan. Furthermore, the previous process would be to send unsolicited probe requests (wildcard requests) to see how APs would respond. Now, remember, this is all a contention-based medium, so these probe requests and responses on every channel for every client create a significant amount of interference and at the very least, inefficient use of the spectrum.
Over the years the IEEE has introduced measures to address these roaming challenges. 802.11k was introduced to provide clients with a list of neighboring APs, 802.11v was introduced to provide a recommended AP candidate, and 802.11r was introduced to reduce the roaming time for 802.1x clients. Not all clients and infrastructure support these measures so while they helped, they did not eliminate the need for clients to send unsolicited probes.
While these IEEE updates are still available for 6GHz, the strategy for AP discovery fundamentally changes. To start with, unsolicited probe requests are no longer allowed (with one limited exception we will discuss shortly).
Three New Methods to Improve AP Discovery
Since we have already established scanning channels at 6GHz is not allowed, there are three new methods introduced in Wi-Fi 6E for finding AP candidates.
The primary method (and the one that clients typically respond to best) is called Reduced Neighbor Report (RNR). Since most, if not all, clients will have legacy band capability, there is an Information Element (IE) embedded in the legacy band beacons that list the 6GHz SSID(s) that are available on the serving AP. The client first scans the 5GHz or 2.4GHz channels and looks for this RNR element. The RNR report contains information about the 6GHz channel, SSID, BSSID, a bit of information on the AP, and the allowed power levels (Power Spectral Density). This effectively makes the 2.4GHz and 5GHz channels a control channel for the 6GHz. Clients can then send a directed probe request to those channels that are learned in the RNR to determine which 6GHz AP to join. It is important to note there can be multiple 6GHz SSIDs included in the RNR and they do not have to match the legacy SSIDs.
The information contained in an RNR is very similar to the information provided in the previously introduced 802.11v action frame. The RNR below is from a 5GHz beacon and is advertising two SSIDs on the 6GHz channel number 5. The legacy 802.11v action report below shows similar information to the RNR but the fundamental difference is twofold:
◉ This is an action frame not part of the beacon like the RNR. It is a request-response type transaction. An RNR is broadcast in the legacy band beacons.
◉ The information in the 802.11v action frame contains information about other APs on the same frequency band. The RNR only lists SSIDs broadcasted from the 6GHz band (different frequency band) as this same AP.
Figure 1: RNR on 5GHz beacon
Figure 2: 802.11v Action Frame
What if the AP is only broadcasting 6GHz? This is an unlikely condition, but nonetheless a potential one. First, scanning can be reduced by limiting the number of channels to be scanned. This is called Preferred Scanning Channels (PSC). The PSCs are the primary channels (20MHz subchannel) of the 80MHz channels. This works well since 80MHz will often be the preferred bandwidth to operate for reasons previously discussed in part 1 of this blog series. If however, lower bandwidth channels are used without RNR or additional support from the methods below, it would be very easy for a client to miss this channel which should be a consideration when using PSC with narrower band channels.
Figure 3: Preferred Scanning Channels (red)
There are two mutually exclusive options to further enhance the AP discovery in which the AP will broadcast messages an additional 4 times between the beacons or about every 20ms (configurable from 5ms to 25ms). The first method is called Fast Initial Link Setup (FILS) and is based on a previous standard of 802.11ai. This is a very lightweight message (somewhere around 100 bytes as compared to a beacon which is 500+ bytes). The second method is called “Broadcast Probe Response” or “Unsolicited Probe Response” (UPR). Like FILS, this advertisement will be broadcast at a higher rate than the beacon. However, the UPR broadcasts everything in the probe response so while it supplies the client with more information, it is a bit heavier in the amount of data transmitted repeatedly.
Teamwork Makes the Discovery Dream Work
So how do these four methods work together? First, if there are legacy band SSIDs transmitted on the AP the expectation is that the RNR will do the work of discovering the 6GHz channel, and no other method is required. In the case where only 6GHz is broadcast from the AP the most likely scenario would be the use of PSC with either FILS or UPR. Notice UPR and FILS are exclusive options, you can only use one or the other. Early testing of client devices has seen some issues with 6GHz standalone APs not being discovered with only PSC and it is needed to have FILS (or UPR) enabled to assist a client in discovering the AP. This may change over time but for the early implementations, deploying 6GHz with only 80MHz channels and PSC enabled is a good option. This allows the primary channel to match the PSC channels. In addition, enabling FILS can provide further assistance for discovery with minimal impact on performance.